
jha.sciedupress.com Journal of Hospital Administration 2021, Vol. 10, No. 5

ORIGINAL ARTICLE

Efficiency of coronavirus inactivation on
environmental surfaces: A comparison study of two
available disinfectants

Kelli L. Barr1, Shannon E. Ronca2, Rodney X. Sturdivant3, Debra D. Harris∗4

1Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, United States
2Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine; Texas Children’s Hospital, United
States
3Department of Statistical Science, Baylor University, United States
4Department of Human Sciences and Design, College of Health and Human Science, Baylor University, United States

Received: August 29, 2021 Accepted: September 21, 2021 Online Published: October 8, 2021
DOI: 10.5430/jha.v10n5p1 URL: https://doi.org/10.5430/jha.v10n5p1

ABSTRACT

Background: There are many coronaviruses of significant medical and veterinary concern, all of which are the result of spillover
from another species. Disinfection of healthcare and veterinary environments is an important factor in limiting the transmission
of coronaviruses. Disinfection agents for coronaviruses use bleach, quaternary compounds, hydrogen peroxide, and sodium
hydroxide. Product labels list contact times that range from 10-30 minutes for total inactivation. Decon7 is a combination
disinfectant that is currently used in the food and agriculture, medical facilities, and other industries. While Decon7 has been
shown to inactivate a variety of pathogens and disrupt biofilms, its effectiveness and rate of coronavirus inactivation has not been
evaluated.
Objective: This project sought to evaluate Decon7’s effectiveness and rate of coronavirus inactivation.
Methods: This study evaluated the disinfection efficacy of Decon7 (diluted at 1:4) and bleach (diluted at 1:10) after 3 coron-
aviruses (SARS-CoV-2, HCoV OC43, and HCoV NL63) were inoculated onto up to sixteen environmental surface materials.
Results: A 1:4 dilution of Decon7 inactivated all coronaviruses on all surfaces with 1 minute contact time. A 1:10 dilution of
bleach was not effective in inactivating coronaviruses with a contact time of 1 minute on all surfaces.
Conclusions: New technologies and chemistries may offer more efficient inactivation of pathogens on environmental surfaces.
These disinfection methods and materials, which require less than 10 minutes contact time, may improve the efficacy of cleaning
and disinfecting surfaces in the built environment.
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1. INTRODUCTION
Coronaviruses (CoVs) pose a significant threat to both human
and animal health due to their ability to transmit between
different mammalian and avian species. They are classified

into 4 genera: alpha, beta, gamma, and delta. Only gamma
and delta CoVs infect and transmit between mammals and
birds.[1] They are shed from mucous membranes and spread
through respiratory droplets and/or feces.[2, 3] Bats are con-
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sidered one of the natural reservoirs for CoVs, and they
shed large quantities of virus while foraging for food.[4] Ad-
ditionally, highly pathogenic strains of alpha CoVs have
been isolated from humans, cats, pigs, and dogs.[3, 5–7] Beta
CoVs are significant pathogens for cows and other rumi-
nants, humans, dogs, pigs, and horses.[8–12] Beta CoVs such
as SARS, MERS, and SARS-CoV-2 are currently associated
with severe human disease and death; additionally, there
are dozens of CoVs of significant medical and veterinary
concern, all of which are likely the result of spillover from
another species.[7] Taken together, CoVs pose a significant
threat to human and animal health and pose the potential for
the agriculture industry to lose billions of dollars.[13, 14]

There are indications that environmental surface material
composition plays a role in the transmission of viruses.[15]

Studies have shown that environmental surfaces can be heav-
ily contaminated with SARS-CoV-2 and other viruses in hos-
pital rooms, leading to contact transmission and contributing
to the spread of SARS-CoV-2 and other infections.[16–23] Re-
search has shown that human CoVs that contaminate surfaces
remain infectious from a few hours to up to six days.[15, 19, 24]

Environmental conditions such as higher ambient tempera-
tures and relative humidity increase the rate of decay, limiting
transmission capability in the indoor environment.[19, 25, 26] A
recent study comparing sixteen different high- and low-touch
materials found that differences in material composition in-
fluences the life-span of SARS-CoV-2 virus and contact
transmission.[15] Two materials tested, copper and a material
with cupric oxide, had no infectious particles by 4 hours,
the first tested timepoint.[15] The virus was only detected on
three of the remaining materials by 24 hours, suggesting an
overall short life-span. Zero infectious particles measured on
materials from 4 hours suggests that material composition
plays a role in contact transmission.

Many disinfection agents are available for CoV inactiva-
tion.[27] Products typically use bleach, quaternary com-
pounds, hydrogen peroxide, and agents containing sodium
hydroxide.[28] Labels of the products approved by the United
States Environmental Protection Agency (EPA) list contact
times ranging from 10-30 minutes for total virus inactiva-
tion on surfaces. Sodium hypochlorite, ethanol, and glu-
coprotamin require a full 10 minutes to inactivate some
viruses.[29, 30] Hydrogen peroxide may inactivate viruses
within 6 to 8 mins, but studies have found mixed results
with some indicating a longer contact time.[29] Quater-
naries are generally fungicidal, bactericidal, and viruci-
dal against lipophilic viruses but not as effective on hy-
drophilic viruses.[31] One study showed that quaternary am-
monium compounds effectively remove and/or inactivate con-
taminants (i.e., multidrug-resistant S. aureus, vancomycin-

resistant Entercoccus, P. aeruginosa) from computer key-
boards with a 5-second application time.[29] Peracetic acid is
very effective at rapid inactivation but is unstable and corro-
sive, indicating that use over time will degrade environmen-
tal surface materials, limiting useful life.[31] Disinfectants
containing silver dihydrogen citrate were found to not be
effective with a 30 minute contact time.[32] Ultraviolet-C
radiation is a productive technology for disinfection.[33–41]

UV-C has been shown to be effective in eliminating bac-
teria on contaminated surfaces in line of sight and behind
objects in about 15 minutes;[42] however other studies have
found that 45-50 minutes were required to get a significant
reduction of pathogens.[43, 44]

2. MATERIALS AND METHODS
2.1 Cells and viruses
CoVs HCoV-OC43 (NR-52725) and HCoV-NL63 (NR-470)
were obtained from BEI Resources. SARS2 Coronavirus
(USA-WA1/2020) was obtained from the World Reference
Center for Emerging Viruses and Arboviruses SARS-CoV-2
and was maintained in a Biosafety Level 3 laboratory. The
virus was grown on Vero CCL81 (ATCC) and titers were
determined by plaque assay on Vero E6 cells (Cercopithecus
aethiops, Vero 76, clone E6, ATCC CRL-1586). The pathol-
ogy of the viruses used differ in cell culture thus, HCoV-
OC43 and HCoV-NL63 were expanded once in Vero E6 cells
and titrated via median tissue culture infectious dose assay
(TCID50).

2.2 Description and composition of products
Decon7 (Decon Seven Systems, Dallas, TX) is an EPA reg-
istered and patented chemical decontaminant, disinfectant,
sanitizer, and cleaning solution currently used in the food
and agriculture industries and used in medical and public
facilities. It is a combination solution containing surfactants,
mild solvents, inorganic salts, a low concentration of hydro-
gen peroxide (∼3.5%), a hydrogen peroxide activator, and
water. The surfactants work to dissolve chemicals into the
formulation, where it is neutralized by the hydrogen perox-
ide.[46] While Decon7 has been shown to inactivate a variety
of pathogens,[47, 48] studies on its rate of coronavirus inacti-
vation are limited. The germicidal cleaner has 0.65% of the
active ingredient, sodium hypochlorite. Sodium hypochlorite,
(The Clorox Company, Oakland, CA) is EPA approved for
disinfection of healthcare and other facilities working with
blood borne pathogens.[49] It is also a common disinfectant
used in cleaning indoor surface materials. The recommended
dilution for bleach to disinfect indoor surface materials while
minimizing corrosion of surface materials is a 1:10 dilution.
The manufacturer recommendation for the dilution of De-
con7 is 1:4. These are the dilutions used in this study with
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a contact time of 1 minute. Sterile, molecular grade water
(nuclease free) was used as a control. Materials that are
commonly used in a variety of indoor environments such
as healthcare, long-term care, education, public spaces, and
homes were inoculated and tested.

2.3 Decontamination testing of the OC43 and NL63
coronaviruses

Assays to measure virus inactivation of OC43 and NL63
were modeled after Warnes et al. 2015.[50] Briefly, 2 in. X
2 in. surface swatches were inoculated with 500,000 plaque
forming units (PFU) of virus. The pipette tip was used to
spread the inoculum over the surface. The swatch was placed
in a sterile petri dish and covered for 15 minutes. After 15
minutes, the swatches were sprayed with disinfectant using
a standard housekeeping spray bottle set on mist. Disinfec-
tants included a 1:10 dilution of Clorox Healthcare R© Bleach
Germicidal Cleaner in deionized water, a 1:4 dilution of De-
con7 in deionized water, and plain deionized water. After 1
minute, the swatches were rinsed with 4 mL culture media
and then the swatches were inverted onto the media. The
petri dish was covered and then rocked for 15 minutes, after
which, 12-well cell culture plates seeded with Vero E6 cells

were inoculated with the media (∼12,500 PFU), incubated
at 37◦C for 1 week and then viral titration was performed
via TCID50. Controls included a no virus plus disinfectant,
plus virus with no disinfectant, and no virus no disinfectant.
All testing was completed in triplicate.

Four environmental surface materials, Solid Acrylic Surface
(SAS), Stainless Steel (SS), Luxury Vinyl Tile (LVT), and
Rubber Flooring (RF), were utilized for this study represent-
ing “high touch” and low touch” surfaces (see Table 1). Each
material is varied in composition and contains properties
that have been shown to influence virus viability.[15] SAS is
used in many applications in healthcare, veterinary, and com-
munity places for both vertical and horizontal applications,
but primarily for counter surfaces. SS is a primary material
for healthcare and veterinary facilities used for carts, work
surfaces, sinks, and other function driven surfaces. Both
materials are high touch surfaces. RF and LVT are flooring
materials and categorized as low touch. RF is commonly
used in healthcare and veterinary facilities while LVT is the
resilient environmental surface material specified across all
building types. Table 1 provides a description and composi-
tion of each material used in this study.

Table 1. Environmental surface materials used for 1 minute disinfection test comparing bleach and Decon7
 

 

Material Composition 

Solid Acrylic Surface  Solid, nonporous, homogeneous, composed of acrylic resin and natural minerals. 

Stainless Steel, Brushed 
Chromium-Nickel (CrNi) austenitic alloy sheet with 18% min. chromium and 10% max. nickel, 18 

gauge, grade 304. 

Rubber Flooring Vulcanized rubber (natural, synthetic, recycled) commonly with a polyurethane top layer.  

Luxury Vinyl Tile #21  
LVT, floating floor installation, flexible PVC core, stabilization layer, cushion backing, 

waterproof. 

 

2.4 Decontamination testing of SARS-CoV-2

Decon7 was mixed per the manufacturer’s instructions. The
disinfectant was tested using a 1:4 dilution. The disinfectant
was placed in a standard housekeeping spray bottle set to
mist. Each material was inoculated with 10,000 PFU of virus
in 50 µl of media in duplicate, housed within a petri dish and
allowed to dry for 45 min.

Assay controls included a duplicate inoculum onto a petri
dish without a material sample. One spray of disinfectant
was added to each material and allowed to sit for one minute.
After one minute, all fluid was collected by washing with
450 µl of phosphate buffered saline and frozen at -80◦C. As
a control for viral stability, the inoculum was spread onto

3 petri dishes and allowed to dry, at which time one spray
of water only was used. As a control for cell viability, one
spray of the disinfectant was used on petri dishes with 50 µl
of dried media only (no virus). After one minute, fluid was
collected and frozen at -80◦C.

To determine the amount of virus surviving after 1 minute of
exposure to disinfectant, collected fluid was thawed. Then,
5 µl of the fluid was placed into 5 ml of cell culture media
and placed on Vero (E6 or CCL81) cells growing in a T25
flask. Cells were observed for cytopathic effects over a pe-
riod of 7 days. Additionally, samples were used to create
a 10-fold serial dilution and a plaque assay was performed
as described above. Sixteen indoor surface materials, a mix
of high touch (i.e., stainless steel, solid surface, and high-
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pressure laminate) and low touch (i.e., rubber flooring, LVT
flooring, and vinyl wall covering) surfaces were inoculated
for the experiment. Material composition for each surface
material is described in Table 2.

2.5 Data analysis
This experiment, conducted during December 2020 was per-
formed 2 times with three replicates each, and the results
were reported as the averages of the replicates in both trials
(6 replicates total) ± the standard error. Univariate analysis

using both ANOVA and non-parametric methods (Wilcoxon
Rank sum for the overall, Steel-Dwass for all pairwise com-
parisons) analysis was performed for both the surface and the
treatment type. A multivariate ANOVA model including both
factors was also fit to further explore the impact of specific
combinations of treatment and surfaces. The multivariable
model simply highlights results from descriptive analysis
due to the nature of the data. Statistical analyses were con-
ducted using Stata version 17.0. Significant differences were
presented at a p-value of ≤ .05.

Table 2. Environmental surface materials inoculated with SARS-CoV-2 for 1 minute contact disinfection with Decon7
 

 

Material Composition 

Acrylic Solid Surface  Solid, nonporous, homogeneous, composed of acrylic resin and natural minerals. 

Solid Surface w/CuO  
Solid, homogeneous, antimicrobial sheet composed of polyester resins, mineral fillers, and 

pigments. Cupric oxide is added for antimicrobial properties. 

Stainless Steel, Brushed 
Chromium-Nickel (CrNi) austenitic alloy sheet with 18% min. chromium and 10% max. 

nickel, 18 gauge, grade 304. 

High-Pressure Laminate  
Decorative surface papers impregnated with melamine resins pressed over kraft paper core 

sheets impregnated with phenolic resin. 

Copper Sheet 
Copper Alloy C71000 (Copper Nickel, CuNi) composed of 78%-84% copper and 

19.0-23.0% nickel, 18 gauge. 

Quartz Primarily a natural material with about 7% polyester resin binder and pigment. 

Rubber Flooring Vulcanized rubber (natural, synthetic, recycled) commonly with a polyurethane top layer.  

Vinyl, Sheet, Homogeneous A single layer of PVC with a urethane topcoat.  

Wood Laminate Flooring  
Laminated layered flooring system utilizing timber veneer backer board, HDF core, and solid 

wood wear layer; may be finished with a urethane coating. Commercial grade. 

Luxury Vinyl Tile #15  LVT, glue down floor installation, flexible PVC core, stabilization layer. 

Luxury Vinyl Tile #21  
LVT, floating floor installation, flexible PVC core, stabilization layer, cushion backing, 

waterproof. 

Luxury Vinyl Tile #26  LVT, glue down installation, flexible PVC core, no stabilization layer, no cushion backing. 

Carpet, Commercial  Nylon 6, 20 OZ, level loop, polyester backing. 

Carpet, Residential  PET, 25 OZ, cut pile, jute backing. 

Upholstery, Nonwoven 
Application for seating, 100% polyurethane nonwoven face with polyester backing. Weight 

15 oz. Performance for abrasion 100,000 double rubs. 

Vinyl Wall Covering, Type II 

Commercial grade wall covering, 20 oz weight, two layers of solid vinyl applied to a woven 

or nonwoven fabric substrate. Composition includes plasticizers, stabilizers, and pigments. 

May contain biocides and flame retardants.  
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3. RESULTS
3.1 Surface type influences virus inactivation with disin-

fectant
In order to determine if surface type contributed to CoV
viability, all disinfection data (water, bleach and Decon7)
were combined for each surface type. For the surface type,
the ANOVA is statistically significant (p = .0063). The non-
parametric Wilcoxon test was borderline significant (p =
.053). Further, SS had significantly fewer PFU than any
other surface (p = .012) (see Figure 1 and Table 3).

Figure 1. Viability of CoVs on 4 common surfaces
figNoteSurfaces were inoculated with HCoV OC43 and
HCoV NL63. Disinfectant (H2O, bleach or Decon7) was
applied. Data for recovered PFU was pooled according to
surface type. Stainless steel produced significantly fewer
PFU than the other surfaces (p = .012)

3.2 Disinfectant type influences virus inactivation
In order to determine if there were differences between disin-
fectants, all surface data (LVT, RF, SAS, SS) were combined
for each disinfectant type (see Figure 2). Parametric and
non-parametric methods suggest significant differences (p =

.0002, p < .0001) exist between Decon7, bleach, and H2O
with Decon7 inactivating significantly more virus (see Figure
2). Bleach and H2O were not statistically different in their
inactivation of virus after 1 minute contact time (Student’s t-
test p = .326). Bleach did have less effectiveness with 2,900
more PFU recovered on average than H2O. The multiple
comparisons for Decon7 with bleach and water are statis-
tically significant for both parametric and non-parametric
tests while water compared with bleach is not significant (see
Table 4).

The multivariate model with both surface and disinfectant
as predictors included a significant interaction effect (p <
.0001) between the disinfectant and the surface. The interac-
tion term reflects differences in H2O and bleach effectiveness
based on surface. Decon7 eliminated all PFUs on all surfaces.
PFUs were essentially completely eliminated on the SS sur-
face by all disinfectants (12.5 units remained with H2O on
average). However, bleach did not eliminate any units on the
other 3 surfaces. H2O similarly did not eliminate units on
the other three surfaces except LVT where it eliminated 93%
of the units on average.

When Decon7 was applied to surfaces inoculated with SARS-
CoV-2, one minute of exposure was sufficient to inactivate all
virus at a 1:4 dilution, regardless of the material type tested.
Additionally, Decon7 was not damaging to the cells when
diluted with cell culture media, allowing accurate detection
of viral cells; nor did Decon7 interfere with cell growth, as
evidenced by the controls. As expected, samples treated
only with water had detectable virus (200,000 PFU/mL upon
plaque assay).

3.3 Virus type did not influence inactivation
To determine if inherent differences resultant from virus type
impacted the data, we combined all data from surface type
and disinfection method for each virus type. The data show
(see Figure 3) that nearly equal amounts of virus was recov-
ered from all viruses (p = .973).

Table 3. Pairwise comparisons for surface influence on virus inactivation with disinfectant (univariate model)
 

 

Surfaces Mean Difference 95% Conf. Int. (Tukey HSD) Tukey HSD Steel-Dwass 

SAS and SS 8329.17 (1488.4, 15170.0) 0.012 0.145 

RF and SS 8329.17 (1488.4, 15170.0) 0.012 0.145 

LVT and SS 4454.17 (-2386.6, 11295.0) 0.309 0.158 

SAS and LVT 3875.00 (-2965.8, 10715.8) 0.429 0.845 

RF and LVT 3875.00 (-2965.8, 10715.8) 0.429 0.845 

RF and SAS 0.00 (-6840.8, 6840.8) 1.000 1.000 
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Figure 2. Viability of CoVs following 1 minute contact time with disinefectant figNoteH2O, bleach, or Decon7 was used to
disinfect 4 surfaces that were inoculated with HCoV OC43 and HCoV NL63. A. Disinfectant: data for recovered PFU was
pooled according to disinfectant type. Decon7 produced significantly fewer PFU than the other disinfectants (p = .0001 for
bleach, p = .0075 for H2O); B. Decon7 inactivated all virus on all environmental surfaces

Table 4. Pairwise comparisons for disinfectants (univariate model)
 

 

Surfaces Mean Difference 95% Conf. Int. (Tukey HSD) Tukey HSD Steel-Dwass 

Bleach and Decon7 9,375.00 (4,474.9, 14,275.1) 0.0001 0.0007 

H2O and Decon7 6,471.88 (1,571.8, 11,372.0) 0.0075 < 0.0001 

Bleach and H2O 2,903.13 (-1,997.0, 7,803.2) 0.3259 0.8384 

 

Figure 3. Viability of CoVs following disinfection on 4
surfaces figNoteH2O, bleach, or Decon7 was used to
disinfect 4 surfaces that were inoculated with CoV-2, OC43
and NL63. Data for recovered PFU was pooled according to
virus type. All viruses produced similar quantities of PFU
following disinfection (p = .961)

3.4 Decon7 inactivates SARS-CoV-2 on 16 surfaces with
1 minute contact time

Sixteen environmental surfaces commonly used in healthcare
and other indoor environments were inoculated with SARS-
CoV-2 and then treated with Decon7 with a ratio of 1:4 parts
H2O. After 1 minute contact time, all surfaces were free of
SARS-CoV-2 while 200,000 PFU/mL of SARS-CoV-2 was
recovered from the control samples treated only with H2O. A
variety of indoor finish materials were used, including work
surfaces (i.e., solid surfaces, copper sheet, stainless steel,
high-pressure laminate, quartz), flooring (i.e., rubber , vinyl,
wood laminate, luxury vinyl tiles, residential and commer-
cial grade carpet), and a nonwoven upholstery fabric and
type II vinyl wall covering. A previous study[15] found that
some indoor finish materials tested for sustained viability of
SARS-CoV-2 for 12-24 hours.

4. DISCUSSION
Studies evaluating hospital cleanliness have reported
widespread failures in disinfection in clinical and non-clinical
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areas, even when bleach was used as a disinfectant.[51] These
failures are usually the result of insufficient contact time with
the disinfectant.[52] Healthcare facilities, animal clinics, and
emergency rooms are challenged with high turnover rates
and meeting the required saturation contact times required
for appropriate disinfection.[53–55] In many high turnover
and high touch areas, housekeeping personnel are given lim-
ited time to perform disinfection procedures. Many offices,
churches, and clinics (human and animal) do not have profes-
sional housekeeping staff or suitable cleaning methods that
neutralize viruses or other microbes. Further, ambulatory
and non-clinical areas are routinely cleaned only once per
day.[56]

Material composition has also been shown to reduce virus
viability over time but they may still serve as vectors for trans-
mission when contaminated with CoVs.[15] Of note, surface
materials fabricated with copper or containing cupric oxide
saw a rapid inactivation of SARS-CoV-2.[15] High touch
surfaces can become heavily contaminated and contribute
to the spread of CoVs.[21, 22] The ability to inactivate the
virus in less than the common regulated 10-minute contact
time to minimize transmission is compelling. Hypochlo-
rite bleach was first used as an antiseptic in the late 19th
century to break the cycle of disease transmission. It is
used in the treatment of sewage and the provision of safe
drinking water.[57] Even today, bleach plays an important
role in reducing cross-contamination of infectious agents via
environmental surfaces. However, bleach is corrosive and
degrades materials over time, lessoning the intention of the
material composition to maintain its integrity.[31, 58, 59]

Research has shown that 70% ethanol is effective at inac-
tivating some viruses when surfaces remain saturated for
at least 2 minutes.[24, 60] For ethanol used in hand disin-
fection, 70% ethanol has been proven to inactivate several
types of viruses. However several virus types, including
polioviruses, caliciviruses, hepatitis A, and foot and mouth
disease virus, require between 80%-100% ethanol with 5
minutes of contact time.[24, 61, 62] While ethanol on its own
is readily available, inexpensive, and not toxic, it is not ap-
proved for use in surface decontamination unless augmented
with other disinfecting agents by the U.S. Food and Drug Ad-
ministration (FDA), European Chemicals Agency (ECHA),
the Theraputic Goods Administration (TGA) , and the Phar-
maceuticals and Medical Devices Agency (PMDA).[29, 63, 64]

Decon7 does not have the corrosive property of bleach, mak-
ing it a potential solution that increases life-cycle value of
environmental surfaces. Decon7 (EPA Reg 89833-3, 89833-
4) has been effectively used in various industries including
the military, first responders, medical, and food and agricul-

ture industries.[27] It is effective in a wide range of temper-
atures, does not require mechanical action, is water soluble
and colorfast. It is free of abrasives and has no VOCs of
concern. The primary ingredients are hydrogen peroxide,
surfactants, and inorganic salts. Thus it does not pose acute
or delayed human risks.[65] For immediate discomfort re-
lated to exposure, flushing eyes with water, washing skin
with soap and water, moving to fresh air for inhalation, and
calling for medical advice for ingestion is recommended.[65]

In this study, Decon7 was significantly more successful at
inactivating CoVs than bleach with 1 minute of contact time.
The practical implications of an effective disinfectant with a
minimal contact time of 1 minute is substantial. Time con-
straints and human error may be mitigated to improve overall
cleaning and disinfecting of environmental surface materials.

Very few PFUs of HCoV OC43 and HCoV NL63 were recov-
ered from SS regardless of disinfectant. This does not agree
with our prior work[15] or that of others that show CoV per-
sists on SS for up to 48 hours.[66] Since the controls worked
for the other 3 surfaces, we concluded that there could be
an environmental factor contributing to our results. Studies
have reported that relative humidity can influence the ability
for CoVs adherence to SS.[67, 68] Even different CoVs vary
in their persistence on SS especially in relation to relative
humidity.[67, 68] Disinfection studies on SARS-CoV-2 were
performed at 45%-50% RH while studies on CoV OC43 and
CoV NL63 were performed at 18%-20% RH.

Stainless steel used in indoor environments is typically either
polished or brushed. This study utilized brushed stainless
steel because it is most used in products and building surface
materials in healthcare and veterinary facilities. Future stud-
ies should include a comparative analysis of polished and
brushed stainless steel to determine if there are significant
differences in the properties of stainless steel as currently
used. This study, conducted in laboratory conditions, did
not use a soil load on the inoculated samples. Supplement-
ing test cultures with an organic soil load, typically in the
form of equine or bovine blood serum, simulates moderately
“dirty” conditions. The EPA requires a minimum organic
soil load of 5% for one-step cleaner/disinfectants.[69] Current
evidence suggests that soil load will affect the efficacy of
disinfectants.[70, 71] A study comparing soil loads found that
to develop a realistic soil load, a combination of bacteria,
protein, hemoglobin, and total organic carbon may be more
suitable than a single material.[70] Future work should in-
clude comparing disinfectants with a soil load to determine
differences in efficacy.

Even when circumstances allow for a 10-minute contact time,
environmental factors can reduce effectiveness. At an aver-
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age relative humidity of 45% (for most areas), disinfectant
that has been sprayed or wiped onto a surface may not persist
for the entire time required for disinfection. In laboratory
conditions, disinfectant sprayed on a countertop dried be-
tween 41 seconds and 3.19 minutes while countertops wiped
with disinfectant wipes dried in 45 seconds to 1.31 minutes.
This is not sufficient contact time for most EPA approved
disinfectants to inactivate CoVs and other pathogens. Thus,
having a product that is effective at 1 minute contact time is
more practical in a real-world environment.

5. CONCLUSIONS
Decon7 inactivates CoVs within 1 minute, a 90% decrease
in time compared to the recommended 10 minute contact

time of all other EPA approved disinfectants for CoVs in-
cluding SARS-CoV-2. A contact time of 1 minute is more
practical in a real-world environment where most healthcare
facilities, animal clinics, and emergency rooms lose valuable
preparation time waiting for 10 full minutes for inactivation.
Additional efforts are needed to apply these recommenda-
tions to clinical and laboratory settings to improve patient
care and safety.
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