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Abstract 
Objective: It is well established that computer based models of x-ray imaging systems are basic and very important tools 

for developing and evaluating new emerging x-ray imaging techniques, optimizing technical parameters, and performing 

feasibility studies prior to implementation in clinical practice. Such models are essential for the development and the 

establishment of new breast x-ray imaging modalities that aim to detect and better characterize breast lesions in their early 

stage. This work presents a complete software package, called BreastSimulator, dedicated for breast x-ray imaging 

research. 

Methods: The package consists of four modules used to create three-dimensional breast models in compressed and 

uncompressed state, simulate x-ray mammographic images and visualize the results of the simulations. The module that is 

used to generate breast models, Breast Modeling Module, consists of several sub-modules that are utilized to model the 

different breast components: external shape, glandular and adipose tissue, breast lesion, skin, pectoralis and lymphatics. 

The Compression Module is dedicated to simulate the mechanical compression of the breasts. Mammographic projection 

images are obtained with simulation of x-ray photon transport starting from the x-ray source, passing through the breast 

model and reaching the detector. This is accomplished in the Image Generation Module. Finally, the results of the 

simulations, i.e. breast models and mammographic images can be seen with the Visualization Module. 

Results: Here, we demonstrate the application of the software package in conventional and dual-energy mammography as 

well as compression studies, as examples to highlight basic functions and applications of Breast Simulator. The first study 

aimed to define the optimal pair of ‘low’ and ‘high’ monochromatic x-ray energies for dual-energy mammography. It 

involved the synthesis of 225 dual-energy images obtained from combinations of ‘low’ and ‘high’ energy images acquired 

in the energy range 14 to 28 keV. Images were generated from a medium sized dense breast model that contained one 

calcification. The study showed that 17/28 keV incident monoenergetic beams are optimal to obtain maximal calcification 

detectability for this breast. The second study demonstrated the effect of breast compression on the quality of the obtained 

mammograms. It included a breast model based on breast CT slices subjected to simulated compression and generation of 

mammographic images. Increased image quality is observed for mammograms obtained from breasts with reduced 

thickness. The characteristics of the x-ray beams that exit a small dense breast model were investigated in the third study. 
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For two mammographic spectra used in mammography imaging, the mean energy of the transmitted x-rays and the mean 

exit angle of the scattered radiation increase as the incident x-ray energy increases. 

Conclusions: We believe that this tool and its functionalities will speed up the development, testing and optimization of 
new breast imaging modalities such as breast tomosynthesis, cone-beam CT and advanced two-dimensional techniques 
like dual-energy as well as specific parts of imaging chain, such as x-ray source, detector and acquisition geometry. 

Key words 
Simulation package, Three-dimensional breast models, Breast compression, Mammography 

1 Introduction 
The most common form of cancer diagnosed in European women remains breast cancer, contributing to almost 4 % of all 
female deaths [1] and 29 % of all diagnosed cancer cases [2]. In Europe, one in ten women develops this type of cancer in her 
lifetime. As the population ages, there will be an increase in the number of women that will be affected by this disease. 
Presently, x-ray mammography screening carried out according to EU Guidelines is the best form of early breast cancer 
detection. Despite technological advances, such as digital mammography, screening and diagnosing cancers hidden in 
dense breast parenchyma remains a challenging task. The insufficient soft tissue contrast and the effect of overlying 
structures in x-ray mammograms are the basic causes that result in approximately 10 to 20 % of the palpable breast cancers 
being missed during screening mammography [3]. 

The development of digital detector technology led to the introduction of novel advanced x-ray techniques that, applied to 
breast imaging, may result in improved detection and diagnosis of breast cancer. Such an example is Breast 
Tomosynthesis (BT) that has the potential to be more accurate, particularly in the case of breast masses in dense breasts 
and to extract additional diagnostic information in comparison to conventional mammography [4]. One commercial BT 
product has been recently approved by the Food and Drug Administration and released on the market. Two other vendors 
are in process of developing similar devices. However, system features, acquisition geometries and reconstruction 
algorithms are still a topic of extensive research, since their choice significantly influences the image quality of BT. 
Moreover, early clinical experience with BT reveals difficulties in the interpretation of breast tomograms, due to 
insufficient training and lack of experience of radiologists with this new modality [5]. Some other examples of advanced 
breast techniques include dedicated cone-beam breast CT and contrast-enhanced BT [6]. These new modalities have 
recently demonstrated good results and may, in the future, also play a role in detecting and/or diagnosing breast cancer if 
some aspects of the technology (e.g. detectors, scanning time, etc) are further improved.  

Modeling and simulation are important tools, primarily exploited in the development, optimization and the establishment 
of novel breast imaging techniques for screening and diagnostic imaging. These are instruments commonly used to 
evaluate both the performance of new modalities in their entirety (e.g. BT or dedicated breast CT) as well as for just 
specific parts of x-ray imaging systems (e.g. detectors, x-ray spectra, or acquisition geometries). The main components of 
breast imaging simulations are modeling the components of the x-ray imaging system: x-ray spectra, detector, acquisition 
geometry and the breast itself, and a computer code to simulate the radiation transport in the model, resulting in generation 
of projection mammography images and evaluation of the dose absorbed in the breast. The precise modeling of all these 
components will ensure results approaching what would be obtained in practice. 

The main output of breast x-ray imaging simulations is the two-dimensional (2D) mammographic images, which are then 
processed according to the aims of each study. Synthetic mammograms are calculated utilizing one of two approaches. 
The most popular approach is to simulate the beam transport through the mammographic system based upon the 
exponential attenuation of incident beams [7-10]. This approach produces images quickly but is limited to the simulation of 
primary radiation effects only. In addition, the radiation dose cannot be estimated precisely. Alternatively, Monte Carlo 
simulation codes [11] that simulate the beam interaction, including the scattered radiation, have been developed. Such 
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simulations are system- and application specific [12] and can be used to generate synthetic mammograms that approach 
reality which can be used to study particular aspects of the imaging chain.  

Amongst the main components of an x-ray breast imaging simulation system is the model of the breast. The use of either a 
simple or complex model can have a large impact on the study results. Simple mathematical breast phantoms, usually in 
the form of cylinder, half-ellipsoid or slabs, are widely used in simulations particularly for dosimetry and optimization of 
acquisition geometry [12-15]. In most cases, they are represented by a homogeneous material (e.g. polymethyl methacrylate) 
that combined with the phantom thickness results in a desired glandular to adipose breast ratio. However, due to the 
homogenous background, their use is limited whenever a real tissue background is required (to investigate the detectability 
of lesions, the performance of image processing algorithms, the reconstruction algorithms, etc). 

Advanced breast models with realistic three-dimensional (3D) breast tissue distribution and anatomical features [8, 10, 16-18] 
have also been developed. They offer a flexible and simple way to investigate different aspects of 2D and 3D x-ray breast 
imaging: to perform accurate breast dosimetry [19], to calculate the properties of the digital mammograms [9] and to 
investigate the effect of BT acquisition parameters on computer-extracted texture features [20]. These models offer complex 
breast tissue simulation and allow the generation of synthetic mammograms which resemble real ones. However, none of 
them is complete and perfect yet. Some of them lack particular anatomical features, some models are unrealistic for some 
applications, the spatial resolution is insufficient, in some cases compression is not applied, and some models cannot be 
extrapolated towards all new emerging modalities. Breast phantoms with realistic tissue distributions may be also created 
from segmented clinical data sets acquired by breast CT [21-23]. Such design guarantees a very high degree of realism; 
however, it represents a single breast composition and lacks flexibility to cover wide anatomical variations. 

A methodology for creation of 3D breast models was reported, but with some limitations in breast type, size and  
resolution [18]. Further research in this field led to the development of an algorithm for simulation of compression of soft 
tissues [24] and an improved version of the methodology for creation of 3D breast phantoms with a projection appearance 
similar to clinical images [10]. In its initial form (based on the publication from 2003), this software has been provided to 
over 20 research and industry organizations and has been regarded as a useful tool to predict the performance of imaging 
procedures. In order to respond further to increasing demands from the research community, we further incorporated the 
novel methodology for breast creation as well as the algorithm for breast compression. This paper reports on the 
development of the entire Breast Simulator software package dedicated for breast x-ray imaging research. The package 
consists of four modules used to create 3D breast models, compress them, simulate their x-ray images and finally visualize 
the results of the simulations, i.e. 3D breast models and 2D projection images. They are outlined in section Materials and 
Methods. Examples that highlight basic functions and applications of the Breast Simulator package, particularly for 
dual-energy mammography, compression studies in standard mammography and use of breast models to study energy and 
angular distributions of x-rays that exit the breast during mammography are reported as results.  

 

Figure 1. Main breast simulator functionalities. Breast Modeling Module may also produce phantoms from segmented 
breast CT slices. 
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2 Materials and methods 

2.1 System description 
A major advantage of the presented software package is its modular architecture. The current software system is 
comprised of a set of separate modules that address specific modeling issues. Specifically, the system, schematically 
presented in Figure 1, comprises four basic software modules: (a) Breast Modeling Module – to generate 3D breast 
models; (b) Breast Compression Module – to compress breast models, (c) Image Generation Module – to model the x-ray 
transport and generate synthetic projection images and (d) Visualization Module – set of utilities to visualize 2D and 3D 
breast images. 

2.1.1 Breast modeling module  
This module consists of several sub-modules that are used to model the different breast components: (a) external shape; (b) 
glandular tissue: ducts and Cooper ligaments; (c) adipose tissue; (d) abnormalities like regular and irregular masses, 
spherical and ellipsoid calcifications and group of micro calcifications (μCas), elongated abnormalities; (e) skin, pectoralis 
and lymphatics. The methodology for generation of realistic 3D breasts and extensive objective and subjective evaluation 
studies has been recently reported by our group [10]. Briefly described, the breast surface is modeled as a combination of 
two geometrical primitives: an elongated semi-ellipsoid and an elongated semi-hyperboloid. For breast CT and cone-beam 
CT applications the external shape may be modeled with a single semi-ellipsoid. The duct system is simulated using a 
network of cylinders, probabilistically arranged in the breast as branches, in a tree-like arrangement, starting from the 
nipple and restricted by the external breast contour. The mammographic texture simulates the presence of adipose, fibrous 
and connective tissues as well as other non-glandular tissue types that are not explicitly modeled. The algorithm is based 
on the use of random walks, calculated using the concept of the ‘fractional Brownian motion model’, followed by a series 
of 3D image processing algorithms that result in a realistic 3D texture. Cooper’s ligaments are modeled as a set of thin 
ellipsoid shells, originating at randomly sampled positions in the breast model, while the pectoralis muscle is 
approximated as a cone shaped object. Breast abnormalities are modeled with round, ovoid, elongated or irregular shapes. 
Lymphatic system is included as well. The final breast is a 3D matrix or several 3D matrices composed of voxels with 
resolution and content defined by the user.  

To increase the ease of use of the breast model generation module, a graphical user interface application for MS Windows 
has been created, helping accelerate the parameter input process and providing some visual feedback. Using it, the 
modeling of the separate breast components is accomplished from a menu shown in Figure 2a. The choice of different 
items from this menu invokes dedicated dialog forms, each of which comprises several fields that are used to define and 
select the proper geometrical (dimensions) and physical (attenuation coefficients) parameters of the modeled breast 
components. An example is depicted in Figure 2b showing a screenshot from modeling a cluster of μCas. The geometrical 
parameters of the cluster are: the radius as well as the number of μCas and their position in the model, while the absorption 
characteristics are represented by the attenuation coefficient that in this particular example is 1.85 mm-1 corresponding to 
the attenuation of calcium carbonate for an incident x-ray energy of 19 keV. A preview window is available to the user to 
facilitate the modeling of the external shape, i.e. setting the dimensions (see Figure 2a).  

There are several outputs from the breast modeling process: (a) a breast phantom without mammography texture (see 
Figure 2c); (b) an attenuation coefficients breast model; (c) a model that contains the elemental compositions of simulated 
breast tissues (Figure 2d), and (d) a mammography texture itself. The second model is useful for generation of 
mammographic images of the breast using monochromatic incident x-ray beams (e.g. 19 keV). The third model is 
exploited with Monte Carlo simulations and breast compression. The breast without mammographic texture is useful for 
creation of breast models with different backgrounds and the same breast components comprised of 3D geometrical 
primitives such as the duct system, breast lesions and so on. The texture itself may be used for evaluation of texture 
characteristics and for creation of models that have the same texture and different breast structure. 
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     (b)  
 (c)  (d) 

 

              (a)     (b)   (c)  (d) 

Figure 2. Screenshots from the software application showing: (a) design of breast components and auxiliary window 
helpful in setting the external dimensions; (b) design of two clusters of ten microcalcifications each. Main outputs of the 
breast modeling process: (c) a breast phantom without mammography texture and (d) a composite model that contains the 
elemental compositions of the simulated breast tissues. 

Another approach is the use of external breast models, for example patient specific data obtained from breast CT. In this 
case, pre-processing of breast data such as denoising of CT slices and tissue segmentation [21-23] is required. 

Breast models are saved in a binary format, which can be imported and viewed in other imaging applications. 

2.1.2 Compression module  
The Compression Module is dedicated to simulate the mechanical compression of the breasts. The compression algorithm 
is a general algorithm for soft tissue compression [24], which is based on a linear spring model. The mechanical properties 
of the tissues are assumed to be linear and isotropic. The breast volume subjected to compression is divided into a number 
of “model elements” each one consisting of 27 nodes (voxels). The nodes in the model elements are connected with 
springs. The spring is defined by two parameters: modulus of elasticity and equilibrium length. The spring modulus of 
elasticity is assumed to be linear and isotropic, i.e. it is a constant for all the range of deformations that can be applied on 
the spring. Each node represents a tissue sample and hence it inherits the modulus of elasticity of that tissue. During 
compression, the volume remains constant due to the introduced concept of spring variable equilibrium lengths.  

Simulation of breast compression is applied to the breast models for the purposes of mammography simulation and breast 
tomosynthesis. Table 1 summarizes the modulus of elasticity of the tissues that are used in the breast compression. To 
facilitate the specification of the position of the plates and the desired final compressed breast thickness in the compression 
process, a visualization module has been introduced.  

Table 1. Values for Young’s modulus 

Tissue Young’s modulus, kPa Literature 

Adipose 1.0 [35] 

Glandular tissue 10.0 [35] 

Skin 88.0 [35] 

Calcification 43.0 [36] 

Cyst 17.0 [36] 
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where Kc,air is the incident air kerma, E is the energy of the incident photons, Φ is the photon fluence and [μen/ρ]air is the 
mass energy absorption coefficients for air, taken from Hubbell and Seltzer [26]. The air kerma is derived from the 
relationship with the mean glandular dose (MGD): 

scgKMGD   [mGy]        (3) 

In this expression, g, c and s are conversion factors depending on factors like breast thickness, glandularity and incident 
spectra. Their values were taken from the literature[13, 27]. The MGD values in mGy are defined according to the European 
guidelines for quality assurance in breast cancer screening and diagnosis for a standard unilateral mammography [28].  

Expression 1 shows that calculated projection images represent 2D energy or photon distributions (depending on the 
detector type) of the radiation reaching the detector. Images obtained with this approach are called analytical or free of 
scatter, since they exploit the analytical relationships for x-ray matter interaction. Poisson quantum noise is also added to 
the original ideal images, using a Gaussian random number generator, with a variance set equal to the number of photons 
that are incident on each detector pixel.  

2.1.4 Visualization module 
There are several utilities that are used to visualize the synthetic projection images and 3D breast models. One utility is 
used to display the simulated mammographic projection images as shown in Figure 4a. Figure 4b depicts the 3D 
visualization module with a breast model composed of duct trees, Cooper ligaments and lymphatic system. Display of 3D 
breast models is implemented with the help of the OpenGL library. For dual-energy applications, there is a dedicated 
module to perform dual-energy imaging based on projections acquired with two energies. In this case, a simple subtraction 
algorithm and weighting of the initial projections is applied.  

 

(a)      (b) 

Figure 4. Visualization Module: screenshots from (a) mammography image display and (b) 3D visualization of generated 
breast models. 
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2.2 Computational issues  
The BreastSimulator software package can be run under Windows or Linux. For Windows, BreastSimulator is compiled 
with Borland C++ Builder 6.0 as a single application with a graphical user interface (GUI) that combines all four modules. 
The executable for Windows, with relevant help and demo files, can be obtained for free, upon request, by any research 
team working in the field. 

Although Borland C++ Builder 6.0 allowed for the development of a GUI under Windows, it can only create 32-bit code 
and hence the application is limited with respect to the size and resolution of the breast model and synthetic images that 
can be generated. To obtain higher resolution matrices and increased speed, the different modules of the package are 
compiled as 64-bit console applications and run under Linux. Still some parameter information is prepared using the 
Windows program.  

The generation of largely ‘realistic’ breast phantoms is computationally intensive. Fortunately, the algorithm is highly 
subjected to parallelization. A possibility which we exploited is the use of the Message Passing Interface for interprocessor 
communication implemented through mpich2 [29]. Parallelization concerns the subroutines that are computationally 
intensive, such as the creation of the duct trees, the cooper ligaments, the background texture and the compression 
simulation. These processes are undertaken by the slave processors that read the broadcasted information, write the voxel 
value in a buffer and send the calculated data when requested by the master processor. In case of breast compression, the 
breast volume is divided into several sub-volumes and each of these sub-volumes is processed by a separate slave for each 
iteration step. 

3 Results: selected examples  
Here we demonstrate the use of the BreastSimulator platform for carrying out optimization work related to the choice of 
appropriate parameters for dual-energy mammography and dual-energy BT, studying the characteristics of scattered 
radiation from breast tissues, as well as its application with real breast images for compression purposes.  

3.1 Defining the best pair of monochromatic energies for 2D and 3D 
dual-energy breast imaging at synchrotron facilities 
The x-ray radiation produced within the storage ring of a synchrotron, such as Elettra in Trieste (Italy), is highly intense 
and monochromatic. Due to the long duration and the high cost of the experiments at these facilities as well as the limited 
time to perform these experiments, simulation work prior to real experimentation needs to be carried out. This is especially 
valid for the case of testing dual-energy mammography and dual-energy tomosynthesis at such a facility. Due to the large 
number of energy combinations for producing a dual-energy image, it is necessary to perform initial simulations that 
would define the optimal pair of ‘low’ and ‘high’ monochromatic x-ray energies for 2D and 3D dual-energy imaging.  

To achieve this goal, we modeled the acquisition geometry at synchrotron facilities, the volumes used in irradiation and the 
x-ray beam transport using BreastSimulator.  

(a) Sample. A software phantom of a breast was generated using the methodology for breast model creation. The computed 
3D uncompressed breast approximates a medium sized breast (540 cm3), with 50% adipose and 50% glandular tissue. The 
model also contained one calcification embedded in the heterogeneous 3D background, simulated as a calcium carbonate 
sphere with diameter of 0.6 mm. Further, compression was applied to the breast model using the Compression Module that 
resulted in a compressed breast model with thickness of 6 cm.  

(b) Geometry. Projection images at synchrotron facilities are obtained using acquisition geometry (see Figure 5a) that 
differs from the conventional geometries utilized in mammography x-ray machines. At synchrotron facilities, the beam is 
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normal mammographic image can be readily seen. These two energies are currently used in a study related to dual-energy 
BT.  

 

Figure 6. Dual-energy study: (a) FOM distribution for a calcification with a size of 0.6 mm detected with Gd2O2S based detector; 
(b) Planar projection image simulated with 17 keV and dose equivalent to the dose for dual-energy image; (c) dual-energy image 

obtained from images acquired with 17 (low) and 28 (high) keV. 

3.2 Investigating compression with breast models from clinical data  
Breast compression is an essential part of mammography and is an important component in producing high quality 
mammographic images. Breast compression allows for dose and scatter reduction, decreased motion and geometrical 
unsharpness, increased contrast, and the separation of breast structures. Moreover, the use of compression results in a more 
homogeneous thickness across the breast, providing fairly uniform density over the mammogram.  

The following example demonstrates the use of a module from BreastSimulator for studying the effect of compression on 
soft tissues. Breast models were created from slices, obtained from breast CT scans of breasts of different sizes and 
compositions at the Department of Radiology and Imaging Sciences at Emory University, USA. Initially, the data were 
de-noised and segmented in order to obtain compositional breast models, i.e. models composed of skin, glandular and 
adipose tissues [23]. An example is shown in Figure 7a, 7b where the uncompressed breast in 3D and a slice from it are 
shown. The voxel size of the 3D breast model was 0.28 mm in each direction, while the whole breast volume was 
calculated to be 2160 cm3. This volume was subjected to the compression algorithm to create a compressed version of the 
breast. The compression plates were placed at two different positions to generate breasts with 5.8 cm and 7.0 cm 
compressed thickness. A slice from the compressed version is depicted in Figure 7c.  

 

Figure 7. Compression with breast models from clinical data. (a) Anthropomorphic breast model created from slices from breast 

CT; (b) Slice from the uncompressed breast model; (c) S from the compressed version at 5.8 cm. 
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Further, to simulate mammography, we generated projection images in the cranio-caudal view. For this purpose, we used 
the same modeled Gd2O2S detector from the previous example. The generated images have a size of 4000 × 4000 pixels 
with a pixel pitch of 0.1 mm. Comparison of projection images simulated from uncompressed and compressed breasts are 
shown in Figure 8 a, b, c. The total dose to the breast was set to 2.5 mGy. Using expressions 2 and 3, we calculated the 
initial photon fluence for energy of 17 keV. 

The visual comparison shows that photons are not reaching some parts of the detector in case of the uncompressed breast. 
This was expected since the same value of MGD (and therefore the initial photon fluence) was used for both the 
compressed and uncompressed breast conditions. In the uncompressed state, the breast is thicker, resulting in higher 
attenuation, and therefore fewer photons reach the detector. This result in poor visual appearance when compared to the 
image from the compressed breasts (see Figure 8b and 8c). To compare the contrast improvement, we calculated the SNR 
in the three projection images. The calculated SNR was about 5 and 4.3 times higher in images obtained from compressed 
breast with thickness of 5.8 cm and 7.0 cm, respectively compared to the uncompressed breast, mainly due to the reduced 
thickness. 

 

 

(a)    (b)    (c) 

Figure 8. Simulated mammographic images of (a) the uncompressed breast shown in Figure 7a and its compressed 
versions with a thickness of 5.8 cm (b) and 7.0 cm (c). The MGD is 2.5 mGy. 

3.3. Investigating the energy and angular distribution of beams that 
exit the breast in mammography 
Projection images obtained from the BreastSimulator are produced very quickly due to the use of an analytical x-ray 
tracing model. A more complex level of simulation of the radiation interaction at the absorber and the detector includes the 
generation of x-rays from the x-ray source, simulation of scattered radiation and the determination of the energy 
absorption, at both the detector and the absorber. This is achieved by the use of Monte Carlo techniques. Monte Carlo 
codes used with breast models with different composition may be exploited effectively in the evaluation of novel x-ray 
sources or detectors as well as to study the influence of the breast composition and thickness on the transmitted x-ray beam 
and therefore on the quality of the generated mammogram. An example is demonstrated below.  

A small dense breast model (134 cm3) with no lesion included was designed using the Breast Modeling Module. The 
model was compressed in the Compression Module to a thickness of 40 mm. Mammographic images were simulated using 
a Monte Carlo x-ray simulation software package developed in-house[32]. The acquisition geometry, shown in Figure 3, 
includes source-detector and source-breast distances equal to 650 mm and 600 mm, respectively. The images are 
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In this paper we presented the software package BreastSimulator, a research tool for performing investigations in breast 
imaging techniques and demonstrated some of its basic functionalities to carry out x-ray breast imaging studies. We 
believe that it is a valuable tool, and based on its functionality it will contribute considerably to the development, testing 
and optimization of novel breast imaging techniques, the evaluation of the effectiveness of the proposed new modalities to 
improve cancer detection and the estimation of the needed material, time and financial resources for their eventual 
implementation in practice. 
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