
www.sciedu.ca/jbgc                                                                            Journal of Biomedical Graphics and Computing, 2013, Vol. 3, No. 4 

                                ISSN 1925-4008   E-ISSN 1925-4016 20

ORIGINAL RESEARCH 

Functional MRI demonstrates pain perception in hand 
osteoarthritis has features of central pain processing  

Nidhi Sofat1, Cori Smee1, Monika Hermansson1, Matthew Howard2, Emma H Baker1, Franklyn A 
Howe1, 2, Thomas R Barrick1, 2 

1. Division of Biomedical Sciences, St George’s, University of London, Cranmer Terrace, London, UK. 2. Institute of 
Psychiatry, King’s College London, de Crespigny Park, London, UK. 3. Centre for Stroke and Dementia Research, Division 
of Clinical Sciences, St George’s, University of London, Cranmer Terrace, London, UK. 

Correspondence: Dr Nidhi Sofat. Address: Division of Biomedical Sciences, St George’s, University of London, Cranmer 
Terrace, London, SW17 ORE. Email: nsofat@sgul.ac.uk. 

Received: February 26, 2013 Accepted: March 25, 2013 Online Published: May 9, 2013 

DOI: 10.5430/jbgc.v3n4p20 URL: http://dx.doi.org/10.5430/jbgc.v3n4p20 
 

Abstract 
Background: Hand osteoarthritis (HOA) is typified by pain and reduced function. We hypothesised that people with 
HOA have enhanced sensitivity and activation of peripheral nociceptors in the hand, thereby potentiating chronic pain. In 
our study we aimed to assess if central sensitisation mediates pain perception in osteoarthritis of the hand. 

Methods: Participants with proximal and distal interphalangeal joint (PIP/DIP) HOA and non-OA controls were recruited. 
Clinical pain scores using the visual analogue scale (VAS) were recorded before and after performing a painful hand task. 
Central pain processing was evaluated with functional brain neuroimaging (fMRI) using a finger flexion-extension  
(FFE) task performed over 3 minutes. Data was analysed with FMRIB software (www.fmrib.ox.ac.uk/fsl). Group mean 
activation of functional MRI signal between hand osteoarthritis and control non-arthritic participants was compared. 

Results: Our group of hand OA participants reported high pain levels compared with non-arthritic controls as 
demonstrated by the mean VAS in hand OA participants of 59.31± 8.19 mm compared to 4.00 ± 1.89 mm in controls (p < 
0.0001), despite all participants reporting analgesic use. Functional MRI analysis showed increased activation in the 
thalamus, cingulate, frontal and somatosensory cortex in the hand OA group but not in controls (thresholded at p < 0.05). 
Regions of activation were mapped to Brodmann areas 3, 4, 6, 9, 13, 22, 24 and 44. Activated regions found in our study 
are recognised higher brain pain processing centres implicated in central sensitisation. 

Conclusions: People with hand osteoarthritis demonstrated features of central sensitisation that was evident after a finger 
flexion-extension task using functional MRI. Functional MRI is a useful biomarker in detecting pain in hand osteoarthritis 
and could be used in future hand osteoarthritis pain studies to evaluate pain modulation strategies.  
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1 Introduction 
The central nervous system is an organ demonstrating plasticity in a system that has the capacity to change e.g. following 
peripheral tissue damage. Changes can occur at the molecular level and the neurotransmitter level [1]. Neurones may also 
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alter their threshold of firing. Inflammation may lead to hypersensitivity of peripheral afferent neurones. As a result, 
neurones may be susceptible to increased firing, an effect also known as peripheral sensitisation [2, 3]. In central 
sensitisation, there may be persistent activation of primary afferent neurones [4]. In chronic arthritis, a complex set of 
activation signals may then lead to the persistence of nociceptive pain. When activation signals reach a chronic phase, 
there is development of allodynia, which may be a pain sensation resulting from a non-painful stimulus and hyperalgesia, 
which is increased pain from a normally painful stimulus.  

Osteoarthritis (OA) is the commonest form of arthritis worldwide, affecting increasing numbers of people in an ageing 
population [5]. In US adults, it is estimated that 27 million people have osteoarthritis [6]. The treatment of HOA includes 
analgesic drugs such as paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs), opioid analgesics and rehabilit- 
ative hand physiotherapy [7, 8]. Recent work has focused on aiming to understand mechanisms of pain in OA in the hope 
that deeper understanding of disease processes may lead to novel therapies [9].  

Recent work has focused on pain quantification in osteoarthritis. Several groups, including work in our unit, have reported 
the use of quantitative sensory testing (QST) [10-12]. Pain threshold testing using algometers has become more widely 
accepted for measuring pain perception objectively since it is reproducible over time and has been validated in large 
studies with knee OA [10] or intra-oral pain [11]. We have found QST to be a useful objective measure of hand OA pain [12]. 
However, recent focus has interrogated imaging techniques to obtain a deeper understanding of pain processing in 
osteoarthritis. In recent years, several brain imaging techniques have been utilised to investigate arthritic pain. For 
example, fluoro-deoxy glucose positron emission tomography (FDG-PET) and functional magnetic resonance imaging 
(fMRI) have demonstrated that the perception of pain in OA is partly mediated by centrally-activated pathways in the  
brain [13-15]. Gwilym et al. [14] reported increased activation of brain pain processing centres with fMRI in chronic hip OA, 
including the thalamus, anterior cingulate and insular cortex, upon quantitative sensory testing. Kulkarni et al. [13] reported 
similar activation using FDG-PET in knee OA, suggesting activation of distinct brain regions in patients with chronic 
arthritic pain. Several authors have described the phenomenon of chronic pain centre activation during arthritis as central 
sensitisation, a process thought to derive from hypersensitivity to stimuli by long-term activation of peripheral receptors in 
arthritic joints.  

We have now conducted a study in HOA to establish the characteristics of pain perception in participants with PIP 
(proximal interphalangeal joint) and DIP (distal interphalangeal joint) hand involvement. We hypothesised that pain 
perception in HOA is mediated by activation of local nociceptive stimuli in the hand causing sensitisation in chronic 
disease. We investigated our hypothesis by evaluating correlations between clinical measures of pain by VAS and 
comparing signal between hand OA participants and healthy non-OA controls by changes in fMRI signal observed during 
a painful hand task.  

2 Methods  

2.1 Participants  
Full ethical approval for our study was obtained from The London-Surrey borders Research Ethics Committee, reference 
09/H0718/60. Thirteen right-handed hand OA patients were recruited from rheumatology outpatient clinics at St George’s 
Hospital, London as previously described [12]. All participants had hand pain due to primary OA of DIP (distal interphal- 
angeal joints) and PIP (proximal interphalangeal) joints. Inclusion criteria were age range 40-75, female gender, being 
right-handed and fulfilling American College of Rheumatology (ACR) criteria for HOA. Exclusion criteria included 
another rheumatological diagnosis e.g. rheumatoid arthritis, recent surgery or metallic implants, male gender, diabetes 
mellitus, psychiatric disorders and other neurologic conditions. Thirteen right-handed controls were recruited through 
poster advertisements. All participants gave written informed consent and underwent the standard safety screening 
procedure for eligibility for MRI.  
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2.2 Clinical evaluation  
Participants in our study included people with an established diagnosis of hand osteoarthritis, as measured by ACR 
criteria, and non-arthritic controls who had no evidence clinically of osteoarthritis. The results of pain scores measured by 
visual analogue score (VAS)  in relation to radiographic change of hands by Kellgren-Lawrence scoring, comparison of 
the hospital anxiety and depression score (HADS) and the health assessment questionnaire (HAQ) to assess hand function 
have previously been reported [12]. All the participants described in our published clinical study [12] also underwent 
functional MRI scanning, the methods of which are described below.  

In order to ensure validation of the study in view of the small sample size, a power analysis was conducted based on the 
mean VAS scores for pain obtained in each group. Power analysis was performed using an online power calculator 
http://www.dssresearch.com. Results showed based on VAS for the hand OA group 59.31 ± 8.19 mm with 4.00±1.89 mm 
in controls, a sample size of n=13 in each group achieves a power of 100%. 

2.3 Magnetic resonance image acquisition 
MRI was performed on a 1.5T GE MRI scanner (General Electric Systems, Milwaukee, USA) with an 8-channel head coil 
used for signal reception. An echo-planar imaging sequence was used to acquire blood-oxygenation level-dependent 

(BOLD) images with echo time (TE) 40 ms, repetition time (TR) 3000 ms and a 90° flip angle. Whole head coverage was 

achieved with 5 mm thick contiguous slices, a 64 × 64 acquisition matrix over a 210 mm field of view (nominal 3.3 mm 
in-plane resolution) and 1 signal average. 60 imaging volumes were collected over 3 minutes for the functional MRI 
paradigm. Each participant completed the paradigm twice during a single scanning session. 

Functional Magnetic Resonance Imaging (fMRI) Paradigm  
The fMRI task paradigm was a 3 minute block design where participants alternated periods of rest with a finger flexion- 
extension (FFE) task with a 30 s period (see Figure 1a). The FFE task consisted of the participant repeatedly closing and 
opening their right hand over the 30s task period. The participant’s arm was at rest by their side throughout all task periods. 
HOA participants reported that the task effectively mimics movements that induce pain. Control participants underwent 
the same fMRI protocol. Although 15 participants were initially recruited into each group, two HOA and two control 
participants were excluded from the final fMRI analysis because they performed the fMRI task incorrectly. This left a total 
number of 26 participants in the final analysis. 

Functional Magnetic Resonance Image Analysis  
fMRI pre-processing and statistical analysis was performed using the Functional Software Library (FSL, http://www. 
fmrib.ox.ac.uk/fsl, Centre for Functional MRI of the Brain (FMRIB), Oxford University, UK). The following pre- 
processing steps were applied to each participant’s fMRI time series: removal of non-brain structures using Brain 
Extraction Tool (BET) [16], realignment of the fMRI time series using motion correction [17] and brain registration.  

Brain registration included normalisation of the fMRI time series to a standard brain image. This was performed using a 
2-stage process to improve image registration to standard space. Firstly, each fMRI time series was coregistered to the 
Montreal Neurological Institute (MNI) 152 brain image (MNI152) using the FMRIB’s Linear Image Registration Tool 
(FLIRT) command which includes a 12 parameter affine transformation using the mutual information cost function. An 
average T2*-weighted image was then computed across all fMRI time series and all participants, providing a study- 
specific atlas image in MNI space. Secondly, each fMRI time series was coregistered to the study specific atlas using 
FLIRT, as described in the first stage. This 2-stage process improved fMRI time-series normalisation by ensuring that 
registration was performed to a study-specific atlas image with similar field of view and image contrast. The regions of 
activation by BOLD signal were identified with Brodmann areas, which define the cerebral cortex into distinct structural 
regions. 
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Figure 1. (a) Functional MRI acquisition paradigm with finger flexion-extension (FFE) task; (b) Mean activation in the 
HOA group measured by fMRI; (c) Mean activation in the control group measured by fMRI. All images are shown in 
neurological orientation with crosshairs, significance threshold 2.3 (p < 0.05), with areas of statistically significant 
increased activation, analysed using FMRIB software. Images are illustrated using MRIcro. 

Statistical analysis was performed using the FMRIB Expert Analysis Tool (FEAT). First level analysis was performed 
with the following parameters: spatial smoothing using a Gaussian kernel of Full Width at Half Maximum (FWHM) of 8 
mm, each voxel time course was demeaned, and non-linear high-pass temporal filtering was applied at 60s. The initial two 
volumes of each fMRI time series were not statistically analysed due to T2*-weighted images not having reached full 
saturation prior to 6 s of scanning.  Motion outliers were computed for each fMRI time series and their locations in the time 
series were entered as a confounding experimental variable. Intermediate level analysis was performed using a fixed 
effects analysis on both 3 minute trials per participant to obtain an average activation map for each participant. This was 
followed by a higher-level group analysis to obtain group mean activations for the control and HOA participants using a 
mixed effects FLAME 1 statistical analysis. A t-test was also performed and statistical inference was provided using a 
z-statistic threshold of 2.3 followed by multiple comparisons correction at the cluster level using Family-Wise Error 
(FWE) at p < 0.05.  

3 Results 
Central pain processing detected by fMRI demonstrates central pain sensitisation in hand OA. The visual analogue score 
(VAS) was used to detect participant’s pain scores on a 0-100 mm scale. HOA participants reported high levels of pain, 
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with a mean of 59.31 +/- 8.19, compared with 4.00 +/- 1.89 (p<0.0001) in controls. The HOA participants also had 
evidence of peripheral sensitisation measured by pressure algometry as previously reported [12]. In this study of the same 
cohort of participants we determined whether the enhanced pain perception reported by HOA participants was attributable 
to central (brain) pain sensitisation. In order to investigate central sensitisation, we designed a finger flexion extension 
(FFE) task to simulate naturally-evoked pain during fMRI (see Figure 1a). The FFE task had 30 sec intervals of rest 
followed by finger flexion and extension on a cyclical basis in order to evaluate fMRI BOLD activation signal. 

During FFE, patients with HOA reported a mean pain VAS score of 55.92, which increased to 74.31 after the FFE task. In 
both HOA and control participants, there was a significant increase in BOLD signal on fMRI in primary motor and 
premotor cortices as would be expected with a motor task (Brodman Area (BA) 3/4/6) (see Figure 1b/c, Table 1). Both 
groups also demonstrated activation of the somatosensory cortex (BA 3/6), although the total area of the somatosensory 
cortex activated in HOA participants was greater than in controls, suggesting greater recruitment of higher brain sensory 
processing centres in HOA (p < 0.05). In HOA but not control participants, FFE induced a significant increase in BOLD 
signal on fMRI on measurement of group activation in regions that included the thalamus (which does not have a 
designated Brodman area), insula (BA 13) and cingulate cortex (BA 24) (see Figure 1b, 1c, Table 1a). These findings 
demonstrate that the FFE task simulating pain in hand OA participants activates additional brain regions recognised to 
mediate brain pain processing in addition to those activated by the same task in healthy controls. 

Table 1a. Location of significant clusters and local maxima for functional activation maps obtained from the FFE task in 
hand OA group (see Figure 1b). 

Cluster description  
(size in voxels and volume) 

p-value Brodmann area  Talairach coordinate maxima (mm) 

1) (9814, 78.51 cm3) 
Cingulate gyrus 

Left hemisphere 
Postcentral gyrus / Somatosensory cortex 
Inferior frontal gyrus  

Right hemisphere  
Medial frontal gyrus / Premotor cortex 
2) (998, 7.98 cm3) 

Right hemisphere 
Superior temporal gyrus  
Precentral gyrus 
Inferior frontal gyrus 
Insula 

<0.001 

24 0 -1 47 

9 -44 0 24 

3 -44 -21 48 

3 -38 -21 50 

3 -32 -23 44 

6 2 0 54 

0.0359 

22 58 5 54 

22 56 6 0 

44 49 1 7 

9 47 0 20 

13 43 7 4 

13 41 -4 9 

Table 1b. Location of significant clusters and local maxima for functional activation maps obtained from the FFE task in 
control group (see Figure 1c). 

Cluster description  
(size in voxels and volume) 

p-value Brodmann area  Talairach coordinate maxima (mm) 

(3940, 31.52 cm3) 
Left hemisphere 
Postcentral gyrus / Somatosensory cortex 
Precentral gyrus / Primary motor cortex 
Middle frontal gyrus / Premotor cortex 
Medial frontal gyrus / Premotor cortex 

0.003 

3 -40 -23 55 

4 -40 -17 55 

6 -39 -12 43 

4 -39 -15 49 

6 -39 -13 49 

6 -1 -5 51 
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4 Discussion 
Hand OA is a chronic disease in which mechanisms of pain are not fully understood. During the painful FFE task in hand 
OA participants, we detected fMRI activation signal in the thalamus, cingulate and insular cortex. Regions activated in 
both the HOA and control groups included the somatosensory and premotor cortex which would be expected in hand 
function and planning of movements. Previous investigators have also detected activation in the thalamus, cingulate and 
insular cortex in painful pressure paradigms for participants with OA knee [13] and sensory testing for neuropathic pain in 
hip OA [14]. It is therefore significant that our study, the first of its kind in HOA, also showed significant activation in the 
thalamus, cingulate, and insular cerebral cortex but not controls. Of interest, the cingulate cortex is involved in developing 
emotion formation, learning and memory, suggesting that HOA participants are adapting their responses to sensory cues in 
their hand and developing unique pain activation systems compared with controls. Others have suggested that the 
cingulate cortex is important in mediating affective processing of pain [18]. The thalamus, which we found to be activated in 
our study, is a well recognised centre of central pain processing and is important in developing adaptive brain networks 
during chronic pain [19, 20]. Our findings and those of others suggest that there are common central processing mechanisms 
in arthritic pain that are activated in several modalities of pain testing. Our data therefore suggest that central sensitisation 
observed in our HOA cohort reflect subjects’ relatively high VAS scores for pain and lower pain thresholds measured by 
algometers. Our data also show that HOA participants may have a significant emotional component to their pain, since we 
observed BOLD signal activation in regions of the frontal cortex, also known as the dorsolateral prefrontal cortex 
(DLPFC) which processes emotion [20]. Parks et al. [21] recently suggested differences between evoked pain (induced by a 
physical pressure) and spontaneous pain (without an external stimulus)  in knee OA subjects [21], suggesting that evoked 
pain has similar mechanisms in patients with knee OA and normal participants but that spontaneous pain is mediated by 
central sensitisation. The same group suggested that spontaneous pain is more likely to be modulated by intervention than 
evoked pain. In our model, one might envisage how spontaneous pain is akin to the VAS reporting by subjects and evoked 
pain is more similar to the algometer-induced nociceptve pain.   

Limitations of our study include that we analysed a relatively small number of right-handed participants (n=26) presenting 
to secondary care, and these patients by their very nature are likely to have had more severe OA. The majority of our 
participants were also taking analgesics and could therefore have altered fMRI changes as a result.   

5 Conclusion 
People with hand osteoarthritis demonstrated features of central sensitisation that was evident after a finger flexion- 
extension task using functional MRI. Functional MRI is a useful biomarker in detecting pain in hand osteoarthritis and 
could be used in future hand osteoarthritis pain studies to evaluate pain modulation strategies.  
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