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Abstract 
The quantitative analysis of tracers in positron emission tomography (PET) studies requires the measurement uptake and 
retention of tracer in tissue over time. This analysis applied to the heart allows to diagnose its state. It could provide a 
means to identify areas of myocardial viability and to assess myocardial ischemia. However, the input function (IF), quite 
commonly used in quantitative analysis, can be corrupted by undesirable effects such as spillover. In this paper, we 
propose a new approach to correct the cross contamination effect on PET dynamic image sequences. It is based on the 
decomposition of image pixel intensity into blood and tissue components using Bayesian statistics. The method uses an a 
priori knowledge of the probable distribution of blood and tissue in the images. Likelihood measures are computed by a 
General Gaussian Distribution (GGD) model. Bayes’ rule is then applied to compute weights that account for the 
concentrations of the radiotracer in blood and tissue and their relative contributions in each image pixel. We tested the 
method on a set of dynamic cardiac FDG-PET of healthy and unhealthy rats. The results show the benefit of our correction 
on the generation of pixel-wise images of myocardial metabolic rates for glucose (MMRG). 
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1 Introduction 
Imaging the bio-distribution and kinetics of radiopharmaceuticals with positron emission tomography (PET) is a valuable 
tool to assess a variety of dynamic parameters. Up to now, the invasive arterial plasma sampling procedure to obtain the IF 
reference remains the gold standard. This method has been intensively investigated [1-5]. Unfortunately, the plasma 
sampling procedure requires a number of blood samples which alter the circulation dynamics in small animals due to blood 
loss. The blood samples need to be measured in counters for radiotracer concentration, cross calibrated with the PET 
scanner, and interpolated to the image scanning times during kinetic modeling. All these operations are either invasive, 
cumbersome, or add uncertainties in the calculated final values. The arterial plasma can also be obtained by an automatic 
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blood sampling technique [6-9], which requires additional corrections. Furthermore, this method has many drawbacks such 
as time delay, dispersion in the tubing, contamination of the samples, and cross calibration between the sample detection 
setup and the PET scanner [10]. To avoid the difficulties encountered in withdrawing and measuring blood samples in each 
experience, population-based IFs have been introduced. In this approach, only one or a few blood samples are extracted 
from the subject to normalize the averaged IF [11-13]. Other authors have proposed the extraction of the IF from  
images [14-18]. Buvat et al. [19] have used the factor analysis of dynamic structures (FADS) method to decompose the 
dynamic sequences into component images. The IF is then extracted from the blood component in the images’  
sequence [20-22]. Independent component analysis (ICA) is another method that has been applied to extract IF from PET 
images [23-28]. ICA acts in similar fashion as FADS but uses a de-mixing matrix to isolate components from a mixture. In 
some studies [29, 30], the authors have presented a method of IF extraction from the so-called image-derived input function 
(IDIF). The IF can also be obtained by the simultaneous estimation method, based on a multi-exponential time-activity 
functions scaled to the measured activity concentration from a limited number of blood samples [31]. In some cases, cell 
damage in a healthy heart leads to cardiac dysfunction and hence, affects the physiologic and metabolic parameters. 
Consequently, the uptake and retention of the tracer will differ from the normal cells. This phenomenon is difficult to 
distinguish from the spillover effects due to the limitation of the scanner spatial resolution. This limitation entails two 
linked partial volume effect artifacts: a 'spill-out' and a 'spill-in' effect. The 'spill-out' manifests in tissue activity spreads 
over its surroundings, so that the measured activity is lower than the actual one. However, the 'spill-in' appears as a spills of 
activity from surrounding tissues into damage cell area, so that the measured activity is artificially increased. These two 
phenomena could be confused with the low activity produced by cell damage. 

The aim of this study is to improve the approach presented [32] to correct the 18F-deoxy-fluoro-glucose (18F-FDG) PET 
imaging for spillover and the use of the two compartment model as presented [33] to assess the myocardial metabolism rates 
for glucose (MMRG). This paper considers the likelihood function as a function estimated from the spatial domain 
modeled by a general Gaussian distribution (GGD). Then it uses an a priori for the blood activity which is computed from 
a carefully withdrawn blood sample. This method was applied to healthy and unhealthy rats. The obtained results allow 
assessment of the extent of tissue damage due to a myocardial infarction (MI). 

2 Materials and methods 

2.1 PET measurements 
All experiments were performed on Fischer male rats weighing 200−220g (Charles River Canada). The experiments 
followed a protocol approved by the Canadian Council on Animal Care and the in-house ethics committee. The 
experimental protocol was designed in such a way that the animals had free access to food and water throughout the 
studies. The study was performed on a set of normal rats and rats with MI induced by ligature of the left coronary artery. 
The PET scans were performed with the Sherbrooke small-animal PET scanner (LabPET4). The scanner is made of 32 
avalanche photodiode detector rings and produces 63 image planes (32 direct, 31 cross) over a 3.75 cm axial field of view 
(FOV). The pixel size after reconstruction is 0.5mm×0.5mm×1.175 mm. The scanner has a flexible system of acquiring 
list-mode data that allow elaborate dynamic PET image series to be extracted as desired. Almost 60 minutes of dynamic 
acquisitions in list-mode were performed on the LabPET4 scanner. Radiotracer was injected via a catheter into the caudal 
vein. The injection of 50±5 MBq of 18F-FDG in a volume of 400 µL was done over the course of 1 minute using an 
automatic infusion pump in the tail vein. During the acquisition, blood was withdrawn through a femoral artery catheter at 
20, 40, 50, 60, 70, 90, 120, 150, 180 sec, and at 5, 10, 15, 20, 25, 35, 52 min. The blood time-activity curves generated from 
sampled blood were linearly interpolated to the midpoint times of the 31 PET frames. Thirty minutes after the injection, 
the glucose level was obtained from the plasma analysis using a commercial reagent kit (Siemens Healthcare Diagnostic 
Inc., Deerfield, IL, USA) and an automated clinical chemistry analyzer (Dimension Xpand Plus, Siemens Healthcare 
Diagnostic Inc., IL, USA). 
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2.2 Methods 
In order to quantify the MMRG, a mathematical framework was developed by several investigators [34, 35]. The three- 
compartment FDG model is used in this study for estimating the rate constants and MMRG. The model, which refers to the 
tissue activity measured by the scanner, is described by a set of differential equations where the solution is given by: 

ሻݐሺܥܣܶݐ				 ൌ ቀܥ௙ሺݐሻ ൅  ሺ1ሻ																																																																					ሻቁ,ݐ௠ሺܥ
where 

௙ܥ ൌ ቆܭଵሺ݇ସ െ ଶߙଵሻߙ െ ଵߙ ሾሺ݇ସ െ ଵሻ݁ିఈభ௧ߙ ൅ ሺߙଶ െ ݇ସሻ݁ିఈమ௧ሿቇ⨂ܥ௣, 
and 

௠ܥ ൌ ൬ ଶߙଵ݇ଷܭ െ ଵߙ ሾ݁ିఈభ௧ െ ݁ିఈమ௧ሿ൰⨂ܥ௣, 
with 

,ଵߙ ଶߙ ൌ ൣ݇ଶ ൅ ݇ଷ ൅ ݇ସ ∓ ඥሺ݇ଶ ൅ ݇ଷ ൅ ݇ସሻଶ െ 4݇ଶ݇ସ൧2 , 
where ܥ௣	is the IF which refers to the tracer concentration in the blood. The constant ܭଵ refers to the rate of delivery of the 

tracer to tissue in units of volume of blood per mass of tissue per minute (mL/g/min), and ݇ଶ,݇ଷ,݇ସ are the transport rate 

constants in units of min-1. The symbol ⊗ in equ (1) indicates the convolution operation. The MMRG is defined by: 

݈݁݋݉ߤሺܩܴܯܯ 100݃ min	ሻ ൌ 100 ܥܮ݈݃ ൗൗܭ ,																																																								ሺ2ሻ 
where	݈݃  is the glycemia value in ݈݉݉݋ ⁄ܮ ܭ , ൌ ௄భ௞య௞మା௞య  the influx rate constant and 1 =ܥܮ is the lumped constant 

accounting for the utilization of FDG versus glucose which is the natural substrate. 

Equation (1) relates to the free and the metabolic compartments of the region of interest. In practice, only the total 

concentration of ܥ௙ and ܥ௠ can be measured. This model was used in the case of cerebral study where the IF was extracted 

from the carotid region [36]. In this case, the IF extracted is free from the potential of cross contamination due to the poor 
surrounding tissue around the carotid. Also, the tissue activity is free of the spillover [24]. All these features made the three 
compartment model, as described by equ (1), a good model to assess MMRG. In the case of heart studies and especially for 
small animals, the spillover problem prevents the use of the model. Two different solutions can be utilized. First, the model 
was modified to compute the contamination of tissue by the blood activity as described in the following equation [37]: 

ሻݐሺܥܣܶݐ ൌ ቀܥ௙ሺݐሻ ൅ ሻቁݐ௠ሺܥ ൅ ݇ହܥ௣ሺݐሻ.																																																												ሺ3ሻ 
This solution is simple; however, it can lead to imprecise rate constants because the model is compromised by a high 
degree of parameterization, and thus leads to numerically inaccurate parameter estimates. In the case of a global MMRG 
estimate, the tissue activity is calculated as a mean of ROI activity over time. Averaging activity in this ROI leads to a 
smoothing effect. This allows minimization of the cross contamination effect and leads to the acquisition of rate values 
similar to those presented elsewhere in the literature. But in the case of pixel-wise imaging, the spillover and noise at the 
level of the voxel results in uncertainty of values. Second, IF and tissue activities are corrected for the spillover effect. For 
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this purpose, we introduce a new likelihood function for tissue and blood activities, and an a prior probability model for the 
blood activity. These probabilities are combined using a Bayesian approach [32]. Given two manually drawn ROIs as 
depicted in Figure 1, 

Figure 1. Image of the rat heart measured with 
18F-FDG during 20min at 40min after tracer 
injection 
  

We denote by S the region defined by the external contour (myocardium and left ventricle). The pixels outside this region 

were not considered for spillover correction. The activity within ܵ is modeled as a random field	ܺ௧, where ݐ ൌ 1,⋯ , ߬ 

refers to the time index of the image frame within the sequence. The value of ܺ௧ at a point ݏ ∈ ܵ is written as:	ݔ௦௧. We 

consider every frame measured as a mixture of two distinct components of blood and tissue activities. Consequently, ܺ௧ is 

modeled as a mixture of two random processes, ܺ஻௧  which models the blood component and ܺ௧்  which models the tissue 

component. ܵis spatially split into two parts, ܵ஻ and ்ܵ. Thus, we model the activity of pure blood as: 

஻,௦௧ݔ ൌ ቊߙ஻,௦௧ ݏ														,	௦௧ݔ ∈ ܵ஻,൫1 െ ௦௧,்ߙ ൯ݔ௦௧,			ݏ ∈ ்ܵ, 																																																																			ሺ4ሻ 
and we model the activity of tissue as: 

௦௧,்ݔ ൌ ቊ൫1 െ ஻,௦௧ߙ ൯ݔ௦௧,			ݏ ∈ ܵ஻,்ߙ,௦௧ ݏ														,	௦௧ݔ ∈ ்ܵ.																																																																		ሺ5ሻ 
In equ (4) and equ (5), ߙ஻,௦௧ ∈ ሾ0,1ሿ and ்ߙ,௦௧ ∈ ሾ0,1ሿ are the actual fractions of blood and tissue activities at each pixel ݏ ∈ ܵ at time ݐ ൌ 1,⋯ , ߬. In the following, we estimate these fractions from the measured ܺ௧ using a Bayesian framework 
as: ߙ஻,௦௧ ≝ ሺܺ஻௧݌  	.௦௧ሻݔ|
Using the Bayes’ rule one obtains ߙ஻,௦௧ ൌ 	 ௦௧|ܺ஻௧ݔሺ݌ ሻ݌ሺܺ஻௧ ሻ∑ |௦௧ݔሺ݌ ௜ܺ௧ሻ݌ሺ ௜ܺ௧ሻ௜ୀ஻,் .																																																																ሺ6ሻ 
Similarly, the tissue fraction is defined as: ்ߙ,௦௧ ≝ ሺܺ௧்݌  ,௦௧ሻݔ|
then 

௦௧,்ߙ ൌ 	 ௦௧|ܺ௧்ݔሺ݌ ሻ݌ሺܺ௧் ሻ∑ |௦௧ݔሺ݌ ௜ܺ௧ሻ݌ሺ ௜ܺ௧ሻ௜ୀ஻,் ,																																																																					ሺ7ሻ 
where	݌ሺݔ௦௧|ܺ஻௧ ሻ and ݌ሺݔ௦௧	|ܺ௧் ሻ are modeled by a GGD (see Figure 2). 
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Figure 2. Generalized Gaussian distribution 

with fixed parameter ߤ ൌ 0 , and ߪ ൌ 1  for 
different values of the shape parameter. 
  

The choice of the GGD to model the likelihood for tissue and blood activities is justified by the difference between the two 
structures. Blood is a fluid with homogenous cells, and tissue is formed by cells with variable responses from one another. 
As a result, we expect a flat p.d.f distribution for the tissue and a sharp p.d.f distribution for the blood. 

The conditional p.d.f ݌ሺݔ௦௧| ௜ܺ௧ሻ for ݅ ൌ  :is given by ܶ	ݎ݋	ܤ

|௦௧ݔሺ݌ ௜ܺ௧ሻ ൌ 	 ௜Γߪ௜2ߚ ൬1ߚ௜൰ ݁
ି൥ห௫ೞ,೔೟ ିఓ೔หఙ೔ ൩ഁ೔ 																																																																				ሺ8ሻ 

where 	ݔ௦,்௧  is a pixel belonging to the tissue ROI. The estimation of the different parameters ሺߤ௜, ,௜ߪ  .௜ሻ is presented in refߚ

36. 

The prior probability for the blood is computed from a sampled ܥ௣ curve. The curve was carefully sampled with a 5 second 

steps during the first 2 min of the scan. The weights over time in the Bayesian rule are calculated as follows: 

ሺܺ஻௧݌ ሻ ൌ ቐ 1         if t<2min,
SCp∑SCp

 if t>2 min, 																																																																								ሺ9ሻ 
where SCp is the sampled Cp. Figure 3 depicts the blood prior	݌ሺܺ஻௧ ሻ 

Figure 3. Prior probability of ݌ሺܺ஻௧ ሻ  after a 
bolus injection, the tracer diffuses into the tissue 
and consequently it exponentially decreases 
with time. 
  

The time acquisition’s frequency can also be used to calculate the prior probability. The dynamic PET data frames are 
acquired in time according to a predefined schedule. This schedule is represented by a time vector:  

൭10ܿ݁ݏ, ⋯,ܿ݁ݏ20 ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥଵଶ௙௥௔௠௘௦ܿ݁ݏ120, , ,ܿ݁ݏ150 ⋯,ܿ݁ݏ180 ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ଺௙௥௔௠௘௦ܿ݁ݏ300, , 
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,ܿ݁ݏ450 ⋯,ܿ݁ݏ600 ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ଺௙௥௔௠௘௦ܿ݁ݏ1200, , ,ܿ݁ݏ1500 ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥଶ௙௥௔௠௘௦ܿ݁ݏ1800 , ᇣᇧᇤᇧᇥଵ௙௥௔௠௘ܿ݁ݏ2400 ൱ 

The user reconstructs the images according to convenient acquisition times depending on the concentration of the tracer in 
the blood and the tissue. This acquisition time is very short in the beginning to localize peak tracer activity in the blood, 
and relatively long at the end to follow the activity in the tissue. The time vector is then sampled over two minute intervals 

to calculate the frames’ frequency at each time step. The resulting histogram ሼ݄ሺݑሻሽ௨ୀଵ௡ , where ݑ	is a time step index and ݊ is the time vector size, represents the prior knowledge of the tracer’s temporal behavior,	݌ሺܺ஻௧ ሻ, in the PET data. This 
histogram has an exponential-like shape, and hence an exponential p.d.f. can be used to fit it as: 

ሺܺ஻௧݌ ሻ ൌ ൜ 	t		if										eି஛.୲ߣ ൐ 0,			0																			if		t	 ൏ 0,																																																																												ሺ10ሻ	 
where	ߣ is a positive parameter that is estimated with maximum likelihood estimator as follows: 

ߣ ൌ ݊∑ ݄ሺݑሻ௡௨ୀଵ  

The tissue prior ݌ሺܺ௧் ሻ, depicted in Figure 4, is computed from the FDG model as the response of tissue after a bolus 
injection. It follows from equ (1): 

ሺܺ௧்݌ ሻ ൌ ଵߙଵܭ ൅ ଶߙ ൣሺ݇ଷ ൅ ݇ସ െ ଶߙଵሻ݁ሺିఈభ௧ሻሺߙ െ ݇ଷ െ ݇ସሻ݁ሺିఈమ௧ሻ൧⨂݌ሺܺ஻௧ ሻ	,																										ሺ11ሻ 
where ଵ=0.102 ml/min/g , ݇ଶ= 0.13 min-1, ݇ଷܭ	  = 0.062 min-1, and ݇ସ= 0.0068 min-1. These parameter values are 
representative of those usually obtained from studies in normal subjects. 

Figure 4. Prior probability of ݌ሺܺ௧் ሻ. The 
PET measurement in a tissue is viewed as 
the cumulative uptake response of the 
radiotracer diffused by blood 
 

Our approach is summarized in Figure 5, which depicts how the initial PET image is processed to find the blood fraction 
and the tissue fraction images.  

Once the component images are calculated, the time activity curve of each component is easily obtained as the average 
intensity. For the blood component, the time activity curve corresponds to the whole blood and it is calculated as follows:  

ሻݐ௪ሺܥ ൌ 1ܰ ෍ݔ஻,௦௧௦∈ௌ .																																																																																ሺ12ሻ 
The plasma activity curve,	ܥ௣ሺݐሻ, is then obtained from the whole blood activity, ܥ௪ሺݐሻ, using a correction factor ܴ஻௉ሺݐሻ 
as follows: 



www.sciedu.ca/jbgc                                                                            Journal of Biomedical Graphics and Computing, 2013, Vol. 3, No. 4 

                                ISSN 1925-4008   E-ISSN 1925-4016 14

ሻݐ௣ሺܥ	 ൌ ܴ஻௉ሺݐሻܥ௪ሺݐሻ,																																																																													ሺ13ሻ 
where	ܴ஻௉ is calculated by taking a series of whole-blood samples throughout the course of several studies, centrifuging 
each sample into plasma and cellular components, and measuring the FDG concentration in each fraction. The resulting ܴ஻௉ is time dependent [37, 38]: ܴ஻௉ሺݐሻ ൌ 0.386݁ሺି଴.ଵଽଵ	௧ሻ ൅ 1.165.																																																ሺ14ሻ 
For the tissue component, the time activity curve is calculated as follows:  

ሻݐሺܥܣܶݐ ൌ 1ܰ ෍்ݔ,௦௧௦∈ௌ 		.																																																																		ሺ15ሻ 
Figure 5. Procedure for calculating the blood 
images and tissue images. Step (I) is the 
calculation of the blood fraction from the 
intensity of a pixel belonging to the blood 

pool region as	ݔ஻,௦௧ ൌ ஻,௦௧ߙ ∙  ௦௧. The remainingݔ

intensity will be allocated to the same location 

for the tissue image in step (II) as்ݔ,௦௧ ൌ ሺ1 െ்ߙ,௦௧ ሻ ∙  ௦௧. Similarly, for a pixel belonging toݔ

the tissue region, we calculate in step (III) the 

fraction of blood as ݔ஻,௦௧ ൌ ሺ1 െ ஻,௦௧ߙ ሻ ∙  ௦௧andݔ

the fraction of tissue for the same pixel as ்ݔ,௦௧ ൌ ௦௧,்ߙ   .௦௧ in step (IV)ݔ

3 Results 
Our approach allowed us to isolate the fractions of blood and tissue in each pixel of the PET image. The extracted blood 

sequences were then used to compute  ( )pC t by applying a Bayesian correction on the manually segmented ROIs. The 

calculated IF is compared in Figure 6 with the curves obtained from the original image (ROI-IF) and the sampled curve 
(Sampled IF). Figure 6 shows the separation of the blood and the tissue signals. The differences between these IFs 
illustrate the effect of spillover in the ROI-IF, which appears during the last thirty-five minutes of the scan. The peak’s 
location is nearly the same for all the curves. In addition, in comparison with the ROI-IF curve, the peak obtained using our 
approach is much higher due to the difference between whole-blood and plasma radioactivities which is corrected using 
equ (13).  

Figure 6. Time activity curves from the same rat. 
Comparison illustrated clearly shows the close shape 

of the computed	ܥ௣ሺݐሻ to the sampling IF. In contrast 

spillover appears in the ROI-IF curve especially at the 
end of the measure, while the tissue activity 
calculated from uncorrected images shows a peak at 
the early time of acquisition which is due to the cross 
contamination. 
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One common method to assess a global MMRG value uses just one ܥܣܶݐ calculated as a mean for the whole myocardium. 

Figure 7 illustrates kinetic modeling using equ (1) for ܥܣܶݐ obtained from original image as the average of the tissue ROI 

activities and equ (3) for ܥܣܶݐ obtained from the corrected image . 

 

Figure 7. A nonlinear least squares fitting of ܥܣܶݐ by the three compartment model. (A) ܥܣܶݐ is computed from original 

image as mean of tissue ROI activities. (B) ܥܣܶݐ is computed from corrected image as a mean of tissue ROI activities. 

Figure 7(A) clearly shows an early peak in the tissue. The data fit gives an inaccurate shape for both free and metabolized 
tracers. In contrast, in Figure 7(B) the second term in equ (3), which refers to the fractional contribution of blood in tissues, 
is omitted. This simplification is due to the correction made in the tissue activity over the time. 

In order to study the robustness of the method with respect to the ROI, two processes have been applied and tested. In the 
first one,100 random contours were generated from a manually traced contour around the blood pool within an area of 2 
mm containing the manually drawn contour. The experiment showed a minimal change in MMRG value (standard 

deviation =1,15 moleߤ 100g min	⁄⁄ ). The second test consisted of two experts drawing eighteen healthy subjects ROIs, 
(the principal author and a nuclear medicine physician). The result showed that the variation of the area under curve 
(AUC) is minimal as illustrated in Table 1 below. 

Table 1. Relative error between AUC computed by user 1 and AUC computed by user 2 calculated as ቚ஺௎஼ଵି஺௎஼ଶ஺௎஼ଵ ቚ ൈ 100. 

The coefficient of correlation between the AUCs values is 99.6% which proves a high reproducibility of ROI choice. 

Rat index 1 2 3 4 5 6 7 8 9 

Error of AUC(%) 3.0 2.8 3.5 7.6 0.4 1.5 3.2 3.1 1.8 

Rat index 10 11 12 13 14 15 16 17 18 

Error of AUC(%) 3.6 2.3 0.4 0.2 0.3 3.8 1.3 2.7 1.0 

The MMRG values for the healthy rats are computed separately using C୮ሺtሻ, the sampled IF and the ROI-IF. The results 

are reported as box plots in Figure 8. 

Figure 8. Comparison of FDG MMRG values 
obtained with the sampled IF, the ROI-IF (IDIF) and 

the computed 	ܥ௣ሺݐሻ for the healthy rats. The t-test 

between MMRG of the sampled IF and 	ܥ௣ሺݐሻ shows 

no significant difference (p<5%). The t-test between 
the sampled IF and the IDIF shows a significant 
difference (p> 5%). 
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The t-test between MMRG calculated with sampled IF and ܥ௣ሺݐሻshows no significant difference (p<0.05). On the other 

hand, the t-test between MMRG calculated with the sampled IF and calculated with the ROI-IF shows a significant 
difference (p> 0.05). We can interpret quantitatively the difference existing in the MMRG values by computing relative 
errors between calculated MMRG. Indeed, the value calculated by our method differs by 3.5% from the gold standard; 
whereas, the value calculated with IDIF differs by 64%. 

The global MMRG assessment is not, however, a reliable method to study the viability of different areas of the heart. The 
method is used as an indicator of the global function of the organ. In contrast, the production of MMRG value at each 
voxel allows a good prediction of the viability of the tissue. Figure 9 depicts parametric images calculated with and 
without correction of tissue activity. Figure 9(B) illustrates the importance of correction for tissue activity. Indeed, the 
parametric image has a good contrast and the estimated MMRG values appear as expected for a healthy heart. In Figure 
9(A) the unit of glucose metabolism is poorly visualized due to the effect of the cross contamination in the original image. 

 

Figure 9. Parametric MMRG image. Images are resized directly in units of glucose metabolism (micromole/100g/min). 
(A) Parametric MMRG image computed with original images. (B) Parametric MMRG image computed with corrected 
images.  

In the case of MI induced by ligature of the left coronary artery, which delivers glucose to the myocardium, we expect to 
obtain a lower unit of MMRG on the parametric image. Figure 10 illustrates glucose uptake pixel-by-pixel calculated on 
corrected and uncorrected tissue activity. Figure 10(A) illustrates the effect of cross contamination on the calculated 

MMRG value. The contrast is lower than the one in the image calculated with corrected ܥܣܶݐ. Figure 10(B) clearly 
depicts the extent of damaged tissue.  

 

Figure 10. Parametric MMRG image for infarcted heart. (A) Parametric MMRG image computed with corrected images 
(B) Parametric MMRG image computed with uncorrected images. 
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4 Discussion 
The ability to accurately define IF is crucial for PET imaging research. In this regard, compartment modeling has long 
been the best way to analyze PET images. However, the blood-sampling procedure is still the reference in research. In 
small animals, this method has been a major barrier because of its invasive nature, the small size of blood vessels, and the 

animals’ limited blood volume. Alternative solutions to obtain ܥ௣ሺݐሻ from images include the IDIFs, the FADS and ICA. 

Among these methods some do not require any blood sampling and others need just one sample to calibrate the IF. ICA 
was mostly used in human brain PET imaging and cardiac PET imaging. Nevertheless, ICA has some pitfalls. First, the 
ambiguity of the sign. Hence, this method could not assure the sign of each independent source. The reason is that, both 
sources and mixing matrix being unknown, any scalar multiplier in one of the sources could always be cancelled by 
dividing the corresponding column coefficient of mixing matrix by the same scalar. The application of this method on PET 
images to extract blood and tissue sources could yield sometimes to a projection of component in the negative space, 
which requires a multiplication by (-1) as in the EPICA algorithm [24]. Second, the order of the identified independent 
components cannot be determined by the algorithm itself, requiring the intervention of an expert observer. Furthermore, as 
mentioned by Naganawa [22], the signal of the estimated IF sometimes contains negative values in a portion of the curve, 
which requires more complex corrections or the use of alternative methods. 

The FADS algorithm is another method, which has been widely used to extract time activity curves from PET and SPECT 
images. However, it also suffers from data negativity problems, and statistical tools such as oblique analysis have to be 

used to project negative data into positive space. In contrast, IDIFs offer a very simple way to define ܥ௣ሺݐሻ and tissue 

uptake. The disadvantage of this method is that the spillover effects make the IDIF a highly biased estimate as shown in 
Figure 6. All these methods require the use of a recovery coefficient to compensate for the lack of resolution of the PET 
scanner versus the size of the vascular structure chosen for the input function substitute. The probabilistic approach 
described in this paper offers a practical and robust method to correct the cross contamination by estimating the fractions 
of free blood and free tissue activities from the initial PET image data sequence. The results reported in Figure 6 show that 

the computed ܥ௣ሺݐሻ is a valid and reliable estimate of the IF, and thus it can be used to accurately derive ܭଵ, ݇ଶ െ ݇ସ and 

MMRG values. It does not rely on recovery coefficients. To illustrate how our method could be useful in the context of a 
medical diagnosis, we built parametric images for healthy and unhealthy rats which describe the MMRG value for each 
tissue pixel. The results are given in Figure 9 and Figure 10. MMRG parametric images reflect the rate of glucose 
metabolism directly, rather than the radiotracer’s concentration. The MMRG parametric image in Figure 9(A) is computed 

using the sampled IF and ݔ௦௧  at each pixelݏ ∈ ்ܵ . This image corresponds to the MMRG before the correction for 

spillovers. The MMRG parametric image in Figure 9(B) is computed using the sampled IF and ݔ௦,்௧  at each pixelݏ ∈ ்ܵ. 

This image corresponds to the MMRG after the correction for cross contamination. In the case where no correction is 
applied to the image sequence, the estimated MMRG is very low as indicated in Figure 9(A). This is due to inadequate 

estimates of constants  ܭଵ, 	݇ଶ െ ݇ହ from initial PET data shown in Figure 1. By reducing the cross contamination using 
our approach, we obtain MMRG values suitable for medical diagnosis as shown in Figure 10(B).  

The probabilistic approach described in this paper is easy to implement as standalone software or integrated into an 
existing one. In this work, we used the ventricular cavity activity as an IF; but, the algorithm could be used as well for the 
femoral and carotid arteries. 

5 Conclusion 
We showed that the probabilistic estimations of the blood and the tissue activities have an important benefit in the 
production of parametric images. Moreover, the MMRG parametric image has the advantage of simplifying the numerical 
evaluation of myocardial metabolism, and the compression of several image frames of dynamic PET studies.  
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