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Abstract  
Force plates have been used in human movement analysis to measure ground reaction forces, centre of pressure (COP) and 
derived kinetic quantities. In competitive swimming external tridimensional (3D) forces assessment is crucial to improve 
starting technique performance. This work aimed to describe the design and construction of a 3D force plate prototype, 
which might be a modular sensor of an instrumented swimming starting block. For this purpose four steps were followed: 
1) numerical determination of sensor conspicuous spatial positioning; 2) development of a first test device and respective 
calibration procedures; 3) final prototype (3D force plate) development and implementation; and 4) development and 
programming of a high speed multiple data acquisition system. Vertical force (< 140 N ± 5%) and COP real time 
determination (± 3% to centre distance uncertainty) are compliant with the literature data and horizontal force is assessed 
based on COP displacement time derivatives. The software for data acquisition and interpretation was developed, leading 
to calibration procedure that provides a set of gains for sequential balance protocol and final transfer matrix. Although the 
final prototype implementation was the main concern of the current study, its development also has proven to be an 
important milestone for a dynamometric swimming start block advance. 
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1 Introduction 
Human locomotion is intrinsically connected to developed ground reaction forces [1]. In swimming individual and relay 
starts, this contact is restricted to the block phase [2], with the corresponding external forces being analysed since the Elliot 
and Sinclair’s pioneer instrumented block [3]. Currently, coaching and commercial instrumentation are still lacking some 
of final solutions and important features [4] inspiring new biomechanical research directions. For instance, it is well known 
that the external kinetic analysis is crucial to determine the parameters that influence the different swimming start 
techniques [2, 5] and that previous ventral start related studies have recommended that elite swimmers should work towards 
producing high levels of peak force resulting in better start performance [2]. 
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For start optimisation, if a limb is in contact to a force platform, the respective 3D force and momentum should be 
measured to maximise training efficiency [6]. Each of the two vectors are tridimensional (3D) and have to be decomposed 

in three Cartesian components Ԧܨ	 ൌ ൫ܨ௫, ,௬ܨ	 ሬሬԦܯ and	௭൯ܨ	 ൌ ൫ܯ௫, ,௬ܯ	 ௭൯ܯ	  with x, y and z framed according to the 

International Society of Biomechanics [7]. The ܨԦ vector components are due to swimmers’ weight and dynamic effects [5] 
and the respective reaction is a symmetrical propulsive 3D quantity (according to Newton’s action-reaction third law). The ܯሬሬԦ measurement is used for assessing contact position - the centre of pressure (COP). Hence, it is possible to obtain the 3D 
force time history (available after calibration and zero adjustment operations) and the COP migration, requiring the 
topology of the contact surface to correct its assessment. 

Ground reaction force effect in the swimmers’ starting movements can be computed if considering it applied to a body 
with known centre of mass (CM), weight and inertia matrix. Such force and moment of force can be appropriately time 
integrated to provide impulse and velocity (if the swimmers’ mass is known) or displacement (by double time integration). 
In addition, the moment of force measured at each contact point allows locating the COP of each limb, which can also 
evidence postural effects [5, 8]. To perform this detailed measurement, a tailored platform set is needed, which should be 
inserted in a new structure suitable for swimming start performance assessment. It should be designed and instrumented to 
obtain a bundle of signals, giving full information concerning the exerted force (including its COP). After a proper 
calibration [1, 8], this device could also be used in day-to-day biomechanical evaluation procedures as a force platform for 
static balance [8, 9] or even for gait [10] and jump analysis [6]. 

Force platforms are devices used for force evaluation through performed measurements on structures in contact to  
limbs [11]. These measurements can be carried out with strain gauges [12], piezoelectric devices [2] or with fibre optic sensors  
[13]. Strain gauges present relevant advantages over piezoelectric sensors, such as better stability for long-term 
measurements providing absolute measurements instead of relative ones [13]. Piezoelectric sensors require a specific 
signal-conditioning device known as a charge amplifier [13]. The strain gauge is bonded on the surface of a mechanical 
structure whose geometry definition (among several sensor topologies that have been used [14-16]) impacts in the force plate 
project and the final selected topology should be based on simplicity and robustness criteria [16].  

An instrumented swimming start block capable to assess independently swimmers’ right and left upper and lower limb 
forces produced in all existent start techniques and respective variants would be a very relevant tool for training purpose. 
Current devices for force measurement applications in swimming starts (and turns) are, though, unable to allow some 
signal separation and avoid crosstalk (cf. [4] for a review on the topic). For example, Slawson et al. [2] used two sagittal 
aligned platforms dedicated to track start characterisation, not allowing laterality contribution apartness in the grab start 
technique. Cavanagh et al. [15] and Galbraith et al. [17] assessed force produced by the hands simultaneously in mixed 
kinetics, with splitting the individual hands force contribution apart being impossible, once again. Thus, the high 
replication number forecast to cover all above mentioned possibilities imply a careful load cell choice as cost could rise 
excessively. The current work aimed to design and construct a low cost 3D force plate prototype composed by a hollow 
pipe topology and simple anchorage. This force plate would be the core concept of an extended dynamometric device, 
built by its simple reproduction in proper location. Using such arrangement it would be possible to map completely the 
limbs reaction force produced in swimming starts, allowing more objective and reliable coaching feedback. 

2 Materials and methods 

2.1 Definition of measurement premises and calibration 
The force plates design has initiated using CAD (3D CAD, DS Solidworks, Dassault Systèmes S.A., France) to define 
prototype geometry. Following previous platform designs [16, 18], an aluminium cylindrical shell (pipe) load cell, 
complying with known mechanical properties (e.g. Young modulus and Poisson ratio consistent with the project 
requirements and the appropriated strain gauges selected) was chosen (see Figure 1, A panel) in accordance to the 
necessary stiffness and estimated load amplitude. Although modelling the conspicuous positioning of the sensors was 
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4 Discussions 
Due to present Fédération Internationale de Natation (FINA) starting block facility rule modifications, some researchers 
have invested in new technologies to measure the external forces applied to the swimming starting block during different 
starting techniques [2, 19, 20]. In addition, researchers have also evolved their study purposes to separate the effective 
swimmers’ forces from the inertial effects [5], highlighting the crucial role of taking specific and accurate measurements by 
instrumented starting blocks. The current work aimed to describe the design and construction of a low-cost force platform 
final prototype, as precursor of a swimming suitable dynamometric central for different start techniques evaluation. The 
implementation of such platform displayed low vertical force range (<140 N), high sensitiveness (~0.5 N), 3D 
extrapolation and short implementation budget suitable for a modular solution involving several force platforms. 

Platform design followed the cylindrical geometry used by Bracci et al. [16] with Esser et al. [18] showing how a very simple 
topology would be suitable for 3D measurement purposes. Furthermore, such simple geometry proposal is characterised 
by a shorter budget compared with the commercial devices [19] that provide direct COP assessment together with parallel to 
cover force measurements (i.e. not in function of COP displacement). The present topology determines the acceptance of 
measurements based on extrapolations, turning COP position assessment with an uncertainty proportional to centre 
distance (~3%) compared to more elaborated topologies. This uncertainty growth and the obtained distribution exhibit a 
minimum value in the centre of the platform cover, in agreement with Collins et al. [11]. Such difficulty can be overcome by 
the use of redundancy, reproducing the 3D load cell and locating four of them in the corners [21] or by changing the 
topology of the load cell [10]. The error has been compatible with the topology proposed before [10], while the resonance 
frequency of the first test device has been found three times greater. However, the force range of the current final prototype 
is lower than Roesler et al. [10], as the thin pipe wall limits the applied load.  

Accurate measurements of ground reaction forces from force plates are important in many areas of biomechanical  
research [5, 8, 9]. In the current study, force platform design and linearization algorithms have shown to be suitable to force 
and moment of force assessment (see Figure 6). In fact, the present 3D force plate prototype displayed a very regular and 
bilinear behaviour to both vertical force and moment of applied force, as presented before [11]. In opposition to this study 
that measured directly uniaxial forces although decentred, the referred authors [11] used calibration procedures that led to 
COP definition with smaller uncertainty while the current force plate ranks higher uncertainty due to its extrapolation 
measurement nature. In competitive swimming, moments of force have not been frequently assessed in different start 
techniques but it is intrinsically connected to COP assessment leading to postural effects that intervene in swimming start 
performance [5].  

Notwithstanding the relevance of present data, some study’s limitations should be considered. For strain measurement 
using strain gauge connected in Wheatstone full bridge arrangement, at least four wires are needed (two for excitation and 
two for measurement), which is twice the required for piezoelectric sensors. With a ¼ Wheatstone bridge it is necessary 
two or three wires (in this case it is possible to assess wire resistance), but the strain signal reduces to a quarter of the full 
bridge measured. However, the strain gauge sensor represents a highly tested, mature and overspread technology, offering 
good sensitivity, precise measurements and competitive price [13, 14]. In addition, noise patterns and high sensitivity to 
moment of force in large COP displacements suggest the use of more than one load cell tube [8,21], as this is due to the 
central extrapolation nature of the measurement accomplished with this type of single load cell. With four platform cap 
cover corner positioned load cells, central COP would be determined with much less uncertainty, as previously  
mentioned [22]. Such new topology, although more expensive, would forecast a minimum centred to cover COP 
determination uncertainty. However, the first topology cost is incomparably low budget (i.e. ~ 50 €) if not considering data 
acquisition system, which could be shrunk with some electronics and microcontroller excitation/data acquisition board. 
Another geometrical sensor loci apparatus possibility would be to apply Roesler et al. [10] topology, which is uncertainty 
compatible with Cunningham and Brown [22]. 
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Despite the above mentioned advantages of the final prototype, which is suitable for force and moment of force 
measurements, it is recognised that in different start techniques swimmers contact with soil limb postures and loci are 
variable, weakening the information of a single platform. As swimmers’ limbs generate propulsive force, it is required an 
integer minimum number of platforms for physical conditions general mapping. In addition, the environment of the 
swimming pool demands waterproof sensors (as the bonding process is hygroscopic and may be damaged). Finally it is 
expectable to have a regular instrumented block complying with FINA’s FR 2.7 and 2.10, rules designing the loci and 
anchorage of the necessary set of platforms. Such dynamometric central would be available simultaneously for scientific 
investigation and for coaching purposes, overcoming the limitations depicted in the commercial instrumented starting 
blocks available [2]. According to Walsh et al. [6], one limitation for the use of force plate in training is that they are 
typically heavy, enhancing the wall mount of the set of platforms and their mechanical fixation importance, which, in turn, 
should prevent any crosstalk measurement between platforms (as their sensitivity is high). Future studies should take into 
account of such feature and try to mitigate its effect. 

5 Conclusions 
A device which can be considered the precursor of the next homemade load cell generation has been developed for 
swimming start performance evaluations, accomplishing the main purpose of vertical force and COP locus determination. 
It has also measured the horizontal force, providing that its assessment could be calculated by COP displacement, albeit 
the results assessed have proven to be more uncertain the more off-centre COP of force applied. The main influence has 
arisen from the central extrapolation nature of the load cell or final prototype, but a low-cost force plate design could be the 
core of a more vast assembly, reproducing the final prototype a certain amount of times and in combination of other 
requirements (mechanical, biomechanical and electronics). This device, as a stand-alone solution, could be used to 
perform measurements in didactical situations, if the precision requirements could be relaxed. Further studies, following 
final prototype development branch and, in parallel, the biomechanics boundary conditions involved in the swimming 
starts, should be carried out to develop a general-purpose instrumented swimming start block. 
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