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Abstract 
Site-directed mutagenesis with DNA oligos is a powerful tool to generate subtle alterations in DNA. Taking advantage of 
strand replacement during lambda-red recombineering, mutations on DNA (donor) can be introduced into another DNA 
construct (acceptor) via targeting. We describe a novel approach that takes advantage of the specificity of homologous 
recombination and the convenience of positive selection to insert mutations into existing DNA constructs.  With simple 
procedures, we generated a “transitory” selection marker that is used to carry modifications into acceptor DNA and then 
removed by enzyme manipulation, leaving only the desired mutation without any scar. Overall, this method of targeting 
mutagenesis via recombineering provides a precision manipulation of DNA and avoids the extensive PCR reaction. Not 
only can this method be used to make point mutations, truncations or Epitope-tags, but it can also be used to import 
existing mutations, generate in-frame fusion, or repair missing components. 
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1 Introduction 
Since its invention in the 1970s, site-directed mutagenesis, which provides a practical way to modify existing DNA 
molecules, has had a profound impact in biomedical research [1]. Many improvements and modifications have been 
developed to simplify the original approaches and reduce the background, especially with the advance of high fidelity PCR 
(HF-PCR) and long-extend PCR. Furthermore, utilizing DNA synthesis, mutations can be introduced to DNA by 
combining several complementary and overlapping long oligos. With the exception of natural occurrence mutations, in 
most cases the DNA oligo is a crucial component of site-directed mutagenesis. Desired mutations can be incorporated 
during DNA oligo synthesis, which may be used as a primer for DNA replication or PCR amplification to generate DNA 
fragments with mutations.  

Whether it is a mutation formed by oligo or the existing DNA mutation, the mutated DNA fragments need to be 
incorporated into a vector for replication.  While mutated primers can be incorporated into a plasmid by DNA replication, 
PCR-generated mutations of DNA fragments may be ligated to a vector. The challenge lies in how to distinguish the 
mutated DNA from parental plasmids in a manner that can be easily identified.  Traditionally, parental plasmids can either 
grown in a bacteria strain that inserts UTP to replace dTTP, or alternatively, the DNA is methylated [2, 3].  After the plasmid 
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is primed or PCR amplified with a mutated oligo, the resulting hybrid plasmids with UTP or methylated DNA can be 
respectively degraded by DNA repair or by using a methylation-specific restriction endonuclease (RE) such as DpnI [4]. 
Alternatively, to reduce the background and undesired alterations of the plasmid, the modified DNA fragments can be 
subcloned and processed independently before being ligated back into the final vector.  In this event, one or two RE sites, 
preferably unique, are needed to shuttle DNA between vectors. Finally, DNA sequencing is used to confirm the generation 
of the desired mutation.  

With the adaptation of homologous recombination (HR) in DNA manipulation (recombineering), the procedures of 
site-directed mutagenesis can be modified and used to generate mutations in large DNA constructs such as Bacterial 
Artificial Chromosome (BAC) [5-8] or high copy plasmids [9]. The widely used Lambda red operon provides three inducible 
enzyme components to facilitate HR during DNA replication [10]. With as few as 30~50 nucleotides of each homologous 
arm, DNA can be altered through recombination to bring insertion mutations into the DNA of plasmids or bacterial 
chromosomes.  With positive selection markers included in the targeting cassette, targeted DNA can be sorted out with 
antibiotic selection to reduce the effects of PCR or DNA sequencing screening. However, to generate a mutation without 
the addition of an extra-DNA sequence (scar-free), special tools such as counter-selection or extensive screening with PCR 
reactions are needed [11]. Still, counter-selection, although convenient, has limitations. First, special care is required to 
maintain its potency. Secondly, specific conditions such as the bacterial strain (rpsl, galk) or specific substrate 
(SacB-sucrose, GalK-glucose & TetR-fusaric acid) need to be matched [12, 13]. Finally, an additional targeting step is 
required to remove the selection marker.  Furthermore, it is usually not suitable to utilize counter-selection with smaller 
plasmids with medium to high copy numbers. 

With the increased size and complexity of modern day vectors, traditional site-directed mutagenesis approaches are 
insufficient to handle such tasks. Novel approaches such as Gibson assembly require multiple rounds of PCR and proof of 
DNA sequencing without error [14]. To modify medium size plasmids between small plasmids (which are PCR manageable) 
and large and low copy number plasmids (which rely on counter-selection and multiple targeting), it is therefore preferable 
to employ recombineering with positive selection only. We acquired the desired mutations in DNA between homologous 
arms (for insertion) as well as part of homologous arms (for deletion and point mutation) and then introduced them into 
targeted DNA via strand replacement during DNA replication [15]. Combining this character with the transitory selection 
marker (tSM), the positive SM used in the targeting cassette can be removed seamlessly without any scar through enzyme 
manipulation. Except for the desired mutation, the resulting plasmids are identical to those of the parental plasmids. Such 
targeting mutagenesis by recombineering (recombimutagenesis) has been adapted to bring in point mutations, peptide tags, 
as well as in-frame fusion between proteins. Our approach simplifies the effort of performing site-directed mutagenesis, 
reduces the implementation of long PCR reactions, decreases the screening effort, and provides an additional tool for 
DNA/protein engineering. 

2 Methods 

2.1 Material 
Recombineering plasmid pKD46 is from Dr. B. Wanner at Purdue though CGSC (E. coli Genetic Stock Center) in Yale. 
Recombinogenic bacteria strains and em7Neo are from Dr. N. Copeland of NCI at Frederick. GFP-Cre and GFP-CreERT2 
and Myr-tagRFP-T plasmids are from Dr. A. McMahon of Harvard.  All restriction endonuclease and most enzymes are 
from NEB (New England Biolabs). 

2.2 Recombineering 

Details of the protocol using DY380 [16] and pKD46 [17] can be found in the cited references. In short, to make a plasmid 
targetable, an acceptor plasmid was sent into a recombinogenic bacteria strain such as DY380 under the selection of a 
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plasmid’s own antibiotic resistance and tetracycline (12.5 µg/ml). Alternatively, pKD46, which contains an Arabinose- 
inducible Lambda red operon, was sent into the host of the acceptor plasmid. Electroporation (Eppendorf, Electroporator 
1660V) was used in all the transformations after the bacteria cells were washed with ice-cold water. In order to circumvent 
the antibiotic resistant conflict of pKD46, which is AmpR and shared with many popular plasmids, we swapped the AmpR 
coding region of pKD46 with other selections such as Kan, CM, Zeo or Hygro via targeting. Both DY380 and pKD46-  

containing bacteria are temperature-sensitive, and cultured at 32 . 

Recombinogenic bacteria was treated with a temperature shift to 42  for 15 min (DY380) or inoculated with 0.1% 

Arabinose for 1 to 3 hours (pKD46) to induce Lambda red activities. Then treated cells were made electro-competent, 

mixed with a prepared targeting cassette, and targeting occurred after electroporation in a 1 mm cuvette. Bacteria was 

flushed out with 0.3 ml SOC and incubated at 32  for an hour.  1/ 10 of the SOC culture was plated on an agar-plate with 

selections against both acceptor plasmid and targeting cassettes. In order to remove Lambda red activities, targeted 

plasmids can be retransformed to new cells or pKD46 can be cured while growing bacteria at 37  to 42  O/N. 

2.3 Generating mutated DNA and targeting cassettes 

Primers used in each experiments are listed in Table 1, which usually containing desired mutations, a unique RE site and a 

SM-specific sequence that can be used to generate targeting cassettes by HF-PCR with SM as a template. Alternatively, 

DNA containing existing mutations, or de novo mutations generated by OLPCR can be cloned into TA vectors for 

sequence confirmation of the desired mutation. A selection marker flanked by a unique RE site was then added via ligation 

or targeting to make the mutated DNA as a targeting cassette. 

To make GSK3β targeting cassettes with a point mutation, primer L to pair with pM-Gly or pM-Ala and primer R to pair 

with pO-Gly or pO-Ala were used to amplify the products L/M and O/R with HF-PCR with Phusion polymerase (NEB 

M0530). There is a 12 bp overlap between these two PCR products.  After purification of each product with agarose gel, 

the same ratio of PCR products was added as a template and an overlapping PCR was performed in which primer L and R 

were added after 5 cycle of self-extension at 37  before resuming the standard HF-PCR reaction. The PCR product with 

the correct size was cloned into a TA vector (pGEMTEasy, Promega) and DNA sequencing confirmed the correct 

mutation. TA cloned Plasmid-pL/R was digested with BspE1 and ligated to BspE1 flanking RPSL-Neo, which was 

generated by using primers BspE1RV-RLNeoF and BspE1RV-RLNeoR with RPSL-Neo as template. Either NotI 

fragment or HF-PCR product with primers L/R was used to generate a targeting cassette. To reduce false positives, DpnI 

was added to remove plasmid templates, and DraI, BspHI, ScaI or XmnI was used to degrade vector backbones.  

Similar procedures were used to generate the targeting cassettes for the Ampkγ point mutation (CGA → CAA) with 

primers pL/pM and pO/pR. A G > A mutation resided within 21 base pairs of the overlapping parts.  After TA cloning of 

PCR products from the OLPCR reaction, DNA sequences were used to confirm the desired mutation. The correct plasmid 

was digested with StuI and ligated to AscI flanked Neo, which was digested with AscI and filled in with Klenow reaction.  

Either a NotI fragment or HF-PCR product with primers L/R were used to generate targeting cassettes.  

To generate targeting cassettes for 4 mutations of mFMR1, fragment of em7Zeo (from pCMV-Zeo, Invitrogen) was used 

as template and PCR with each pair of long primers LA/RA that provide homologous arms, mutation (R138Q/ 

G481S/S499D/R533H), unique site (NheI/ BtmI) and identical SM specific primer (Em7F and ZeoCR). 

Self-splicing peptide F2a contains 24 amino acids and 72 bps. HFPCR with primers containing half of the F2a sequence, 

FseI and either em7 forward or Neo reverse sequence (F2a-FseI-em7F and F2a-FseI-NeoR) were used to generate F2a- 

Fse-em7-Neo cassettes. Then F2a-Fse-em7-Neo served as template to generate targeting cassettes by adding homologous 

arms against GFP and Cre with LAGFPC-F2aF and RACreN-F2aR. 
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Table 1. Primers sequences 

GSK3β-pL 5’ TGGTAGGTGCATTTGTTCAGCTC 3’ 

GSK3β-pM-Gly 5’ gtcgccCACCAGGTTAAGG TAGACCTCATCTTTC 3’ 

GSK3β-pM-Ala 5’ gtcggcCACCAGGTTAAGGTAGACCTCATCTTTC 3’ 

GSK3β-pO-Gly 5’ CTTAACCTGGTGGGCGACTATGTTC 3’ 

GSK3β-pO-Ala 5’ CTTAACCTGGTGGCCGACTATGTTC 3’ 

GSK3β-pR 5’ TTCTGGAAACTAGAAGGGGTTCG 3’ 

BspE1RVRLNeoF 5’ ATATCCGGATATCGGCCTGGTGATGATGGCGGGATCG 3’ 

BspE1RVRLNeoR 5’ ATATCCGGATATCAGAAGAACTCGTCAAGAAGGCG 3’ 

Ampkγ-pL 5’ ACTGCGAGGGGATGGTACTTTG 3’ 

Ampkγ-pM 5’ GCGGTGCCGCTTGCACACCGTTGTAGACGAGGGCGTAGAAG 3’ 

Ampkγ-pO 5’ ACGGTGTGCAAGCGGCACCGCTCTGGGATTCGGAGAAGCAAC 3’ 

Ampkγ-pR 5’ TTTGATGGCATCGTAGAGGGAC 3’ 

em7F 5’ TGTTGACAATTAATCATCGGCA 3 

ZeoCR 5’ TCAGTCCTGCTCCTCGG 3’ 

mFMR1R138QLA 5’ TCAAGCTGGAGGTGCCAGAAGATTTAcagCAAATGTGTGctagc-em7F 3’ 

mFMR1R138QRA 5’ GCCTTTTTAAAATCCTTATGTGCTGATTCTTTGGctagc-ZeoCR 3’ 

mFMR1G418SLA 5’ CGAGGTAGTAGACCTTACAGAAATAGGGGGctagc-em7F 3’ 

mFMR1G418SRA 5’ AATTAGTTCCTGAAGTATATCCAGGACCGCGTCTagaGTGctagc-ZeoCR 3’ 

mFMR1S499DLA 5’ TACTTCAGGAACTAATTCTGAAGCATCAAATGctagc-Em7F 3’ 

mFMR1S499DRA 5’ CACTGAGTTCGTCTCTGTGGTCAGATTCTGTTTCgtcAGctagc-ZeoCR 3’ 

mFMR1R533HLA 5’ GGGAGAGCTTCCTGCGCAGAGGAGACGGACGGctagc-em7F 3’ 

mFMR1R533HRA 5’ CCTCTTCCTCCTTGTCCTCTTCCTCCTCCTCCgtgCCGctagc-ZeoCR 3’ 

F2a-FseI-em7F 
5’ GCACCGGTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCCG 
GCCGACCTGCAGCCTGTTGA 3’ 

F2a-FseI-NeoR 5’ GGGCCCTGGGTTGGACTCCACGTCTCCGGCCGGCCTCAGAAGAACT CGTCAAGAAG 3’ 

LAGFPC-F2aF 
5’ GTACAGCTCTCGACGGAGAAAGCTCAGGCTCTGGCTCAGAGTCTGA 
CTCCGCACCGGTGAAACAGACTTTGAA 3’ 

RACreN-F2aR 
5’ TCGACCGGTAATGCAGGCAAATTTTGGTGTACGGTCAGTAAATTGG 
CCATGGGCCCTGGGTTGGACTC 3’ 

Rb-bGHpAF 5’ CCCCTGCTGTCCATTCCTTATTC 3’ 

SV40ProR 5’ GGTTGCTGACTAATTGAGATGCG 3’ 

2.4 Removal of selection markers 
After targeting and the desired mutation were introduced into the acceptor plasmids, selection markers were removed with 
enzyme sites that flank the SM. The extra nucleotides, which were added to generate a unique site, were then removed to 
restore CDS.  To polish 3’ overhangs, standard Klenow or T4 polymerase reaction was used with the supplement of 1 µl of 
10 mM dNTPs either by adding 1 µl Klenow into the RE mixture and incubating at RT for 30 min or through the use of a 
Quick Blunting Kit (NEB E1201) [18]. To blunt 5 overhangs, 2.5~20 units of Mung Bean Nuclease (NEB M0250) were 
used and followed by phenol / chloroform extraction and EtOH precipitation to remove enzymes. PCR was then performed 
on the ligation product and confirmed the change of restriction sites. Blunted DNA was then ligated and transformed into 
NEB 10-beta cells (NEB C3019H). Individual colonies were checked through evaluation of the loss of antibiotic 
resistance and RE digestion of the PCR products around targeted site. 
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The drawback of MBN is that it is difficult to inactivate and less effective in removing of G or C overhangs. It also has the 
tendency to remove extra-nucleotides of T if “breathing” of the DNA ends takes place [22]. In addition, AT rich areas within 
DNA can be digested by MBN. Thus, removing overhangs with MBN requires enzyme titration [23]. To determine the best 
approach for blunting an overhang end, we tested those enzyme reactions on plasmids which, when digested by one 
enzyme, blunted to remove the overhang and ligated, would generate a different enzyme site. One plasmid 
(pCZV-bGHpA) was tested for 3’ overhang (ApaI > PstI) and another (pCAG-dsRed) for 5’ overhang (HindIII > NcoI) 
(see Figure 2B). With the 3’ overhang, both Klenow fragments and MBN can generate a blunted DNA end, but Klenow is 
a better choice as it is easy and convenient to use. With the 5’ overhang, MBN required titration to increase the yield of 
flushing DNA ends without altering the surrounding sequences.  

In summary, we describe a simple and straightforward approach to generate a removable and scarless tSM by using the 
non-cutters RE sites with sticky ends.  Not only does such tSM utilize convenient and powerful positive selection, but also 
no specific tools are required but routine enzyme manipulation. 

3.3 Making a unique site 
Ampkγ is a component of energy sensor AMPK (AMP-activated protein kinase) in the cells. A point mutation (Arginine 
965 > Glutamine) has been proposed to pheno-copy the mutation of the AMPKα gene, which caused neurite swelling in 
flies [24].  Plasmid pUAST contains a Gal4 promoter, a traceable white gene, and a P element to generate a fly transgene 
(see Figure 3A).  Together with Ampkγ: GFP, pUAST_loe_gfp_LK plasmid has no suitable RE sites around the desired 
mutation. Thus, it is troublesome to perform mutagenesis by PCR or by shuffling a small manageable fragment. We tested 
the approach of generating a point mutation in a BAC with this plasmid initially, using 50mer and gene specific primers to 
generate a targeting cassette with a mutation and RPSL-Neo. The mutation was confirmed and imported together with Neo 
selection after targeting.  However, when RPSL was used for counter-selection with DNA fragments of either 40 mer 
oligos or longer generated by OL-PCR, the whole construct was recombined and lost PCR target (data not shown). This is 
more likely due to either instability of the priming plasmid or by failure of counter-selection.  

As targeting worked precisely to bring in the mutation and SM, different approaches were required to remove SM. We 
decided to change the nearby StuI (32 bp from mutation site) to make it unique. The same OL-PCR product with the 
desired mutation (CGA > CAA) that was used for reversing RPSL was TA cloned and the unique StuI site was digested 
and ligated with blunted AscI flanked em7-Neo (see Figure 3A).  This ligation reconstituted the AscI site. After targeting, 
the mutation was confirmed (4 of 4).  The resulting plasmid was digested with AscI to remove the Neo, and MBN was used 
to remove the added 5’ overhang CGCG and restore the StuI site following ligation (see Figure 3B).   

As MBN was found to be less effective in removing GC overhangs, a MBN titration was performed in order to determine 
the best conditions that produce DNA with StuI site restored [22]. The plasmids from titrated reactions that StuI can 
partially cut were transformed. To screen for those StuI restored plasmids, individual colonies [24] were PCR with primer 
L/R and the resulting PCR products were digested with or without StuI (see Figure 3C).  Miniprep was then performed 
with 4 of 6 colonies with positive signals and digested with StuI. All were identical to that of the original plasmid but the 
mutation (see Figure 3C). 

3.4 Simplify targeting cassette making 
Four individual mutations were designed to study the function of FMR1 protein [25]. As a whole plasmid is less than 9 kb in 
size, the Quick Change (HF-PCR with 40 mer mutated oligos [26]) approach is well equipped to handle such a task. After 
multiple rounds of PCR reactions, no colonies were generated after transformations. The parental plasmid is likely 
pGFPC1 (Clontech) as it is a fusion between eGFP and mouse FMR1 and can be selected by Kan/Neo. After restriction 
enzyme diagnostics pattern didn’t agree with the predicted results, DNA sequence reaction was performed to exam its 
flanking sequence. A second modification was realized to replace CMV with human FMR1 promoter (see Figure 4B). 
Without sequencing the whole plasmid to figure out why the Quick Change PCR reaction had difficulty with such plasmid, 
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into NIH3T3 cells respectively by lipofection. Total protein extract was prepared and a protein blot was performed with 
anti-GFP antibody (see Figure 5C).  The IRES-eGFP showed a band~27 kD, which is the correct size of GFP. GFP-Cre 
fusion protein is around 68 kD with a processed product that has the same size of native GFP. Multiple bands were 
detected with eGFP-F2a-Cre transfection.  The large protein is likely the GFP-F2a-GFP fusion protein, as well as several 
processed proteins, eGFP-F2a and eGFP, which is consistent with F2a properties. The F2a self-splicing efficiency is more 
than 70% when compared to the intact and processed bands.   

To assay Cre function, the expression constructs were respectively co-transfected with pCAG-STOP-myr-tagRFP-T 
plasmid into mammalian cells, and Cre can be monitored by the expression of tag-RFP-T (red) [30]. With myristoylation, 
myr-tagRFP-T is expected to localize on the membrane. After analyzing confocal images, the major red color is associated 
with ER (see Figure 5D) in all three constructs, suggesting Cre is able to remove loxP floxed STOP cassette. Due to its size, 
cytosolic GFP is expressed in the whole cell, and eGFP-Cre is localized in the nucleus.  When GFP and Cre were separated 
with F2a, most double-staining cells with red and green colors exhibited cytoplasmic distribution of GFP and only a few 
were in the nucleus, which is consistent with the protein blot result (see Figure 5D). 

4 Discussion 
Recombineering has been used to generate site-directed mutagenesis without leaving extra-DNA (scar) in a BAC as well 
as in the bacterial genome by using oligos with mutations to serve as primers for DNA replication [7, 10]. Without a proper 
way to distinguish mutated from parental plasmids, substantial screening efforts are necessary. Cassettes such as Tet R, 
GalK, Neo-SacB, and RPSL-Neo, can be both positively and negatively selected that have been used to facilitate the 
identification of recombined DNA [11]. Positive selection markers provide an easy way to “tag” mutated DNA after 
targeting. Counter-selection can then be applied to isolate the loss of selection markers after primer priming. However, due 
to the special requirements such as special strains of bacteria (rpsl, galk) and the high rate of mutation, counter selection is 
more suitable with low copy and large plasmids such as BAC.  In addition, mismatched priming with a mutated oligo can 
yield off-site targets. As such, this approach is limited to making point mutations. To solve those issues and to take 
advantage of strand invasion and its tolerance of minor mismatches in homologous recombination, a single positive 
selection marker which can provide scarless removal was employed to introduce mutations in acceptor plasmids through 
targeting. 

Theoretically, placing a selection marker inside an intron or intein can achieve the “scarless” requirement through relying 
on cellular machineries to remove the selection marker [31, 32]. However, both introns and inteins can work only with 
protein coding region, and intein can only be used in between domains. As for introns, additional sequences in exons and 
introns are needed for precise splicing, thus limiting their usage in carrying selection markers for targeting. The need to 
find a non-cutter will be relieved when an enzyme recognizes a rare DNA sequence, which can be removed by either such 
an enzyme or together with other enzymes. Development of zinc-finger nuclease (ZFN), TAL effector nuclease (TALEN) 
and Cas9/Guide RNA indicates a possible artificial endonuclease with a long recognition site, which could be unique 
within the human genome [33-35]. With its current design, artificial endonuclease is similar to a meganuclease (homing 
enzyme), which recognizes a long stretch of DNA, but its recognition site can’t be removed easily after digestion. It is 
possible to either tweak the artificial endonuclease arrangement to meet the “transitory” criteria or to combine homologous 
recombination repair as used with a meganuclease [36]. Recently, transposases have yielded no excision footprint, which 
may provide a way to generate a tSM [37]. PiggyBac recognition sites flanking selection markers have been successful in 
repairing tyrosinase point mutations after ES cell targeting. Subsequently, they can be removed with PiggyBac transposase 
to resume an original open reading frame [38].  The limitation is that PiggyBac requires a TTAA site for insertion and 
excision and whether such reactions can be used in genetic engineering is unknown. 

Combining the benefit of recombineering with enzymatic manipulation, we devised a seamless and effective way of 
making site-directed mutagenesis. A few examples of DNA fabrications were presented to support the usefulness of our 
methodologies. Not only can we modify plasmids with point mutations, but we can also enable DNA recombination to 
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bring in mutations or generate fusion proteins. Different from PCR and BAC-based site-directed mutagenesis, our method 
is not limited to generating point mutations, but also includes importing or removing DNA as truncation. Using a 
“transitory” selection marker, one can tag DNA for complicated manipulation such as Epitope tags or fusion proteins. 
With existing mutations, after tagging mutated DNA with tSM, it can be shuttled around via ligation or targeting as DNA 
itself can be the homologous arm. Although our procedure requires RE manipulation, it is not limited by location, the 
availability of RE sites, nor addition of restriction site, but it is a rare occasion that a non-cutter can be useful. With the 
efficiency of targeting and the transient nature of tSM, it is conceivable that high throughput site-directed mutagenesis is 
possible to make a slight difference in otherwise identical plasmids, or by making random mutations in designated areas to 
generate pools of mutations in a defined domain [39]. Indeed, based on our experience, as long as homologous arms can 
form a stable complex with acceptor plasmids, single, double or even multiple mutations can be imported in one targeting 
event. 
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