http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2016, Vol. 2, No. 1

ORIGINAL ARTICLES

Analysis of BRCA gene missense mutations

Stella W.S. Lai, Rebecca M. Lopes, Elaine Doherty, Debra O. Prosser, Rongying Tang, Donald R.
Love

Diagnostic Genetics, Lab PLUS, Auckland City Hospital, Auckland, New Zealand.

Correspondence: Donald R. Love. Address: Diagnostic Genetics, LabPLUS, Auckland City Hospital, PO Box 110031,
Auckland 1148, New Zealand. Email: donaldi@adhb.govt.nz

Received: September 2, 2015 Accepted: October 7, 2015 Online Published: October 20, 2015
DOI: 10.5430/jbei.v2n1p9l URL: http://dx.doi.org/10.5430/jbei.v2n1p91
Abstract

With the significant progress in sequencing technologies over the last 10 years, a concomitant increase in the detection of
variants of uncertain significance (VUSs) has been reported with an increasing amount of data. The interpretation of VUSs
has been challenging due to the discordance of prediction results and their classification in different locus-specific
databases (LSDBs). The evolving nature of variant classification systems poses the question as to the best strategies for
variant interpretation. With the increased complexity of data analysis in a clinical setting, the pathogenicity of a variant
should be determined through integrating and interpreting the data as a whole. Here we demonstrate the problems that are
commonly encountered when interpreting VUSs and show that data integration helps in determining the pathogenicity of a
variant.
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1 Introduction

Breast cancer is the most frequently registered cancer and the second leading cause of cancer death among women in New
Zealand. Compared to the second half of last century, the incidence of breast cancer has been increasing in New Zealand .
Germline mutations in the BRCAL/2 genes account for approximately 10% to 15% of all breast and ovarian cancers and are
known as hereditary breast and ovarian cancers (HBOC) 131,

The BRCAL/2 genes, which are tumor-suppressor genes, were identified by positional cloning in the 1990s. These genes
encode for proteins that are responsible for controlling cellular growth and differentiation ***). Patients who have known
pathogenic mutations identified in the BRCAL/2 genes carry a genetic predisposition to developing breast, ovarian,
prostate, and/or pancreatic cancer. According to Stratton and Rahman ®), patients carrying known pathogenic mutations
have a 10 to 20-fold increased risk of breast/ovarian cancer compared to those in the general population. Mutation
screening of the BRCAL/2 genes using either Sanger-based or Massively Parallel Sequencing approaches provide
improved prognosis and clinical management for HBOC patients. Patients who carry known pathogenic mutations are
offered enhanced surveillance strategies, chemoprevention and risk-reducing surgery !-*1.
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The majority of germline pathogenic mutations in the BRCAL1/2 genes are either nonsense or frame-shift mutations, while
approximately 5% to 6% of HBOC patients in the United States are reported as carrying an “unclassified variant” (UV) or
a “variant of uncertain clinical significance” (VUS) in the BRCA1/2 genes °!. The remaining 80% of patients carry variants
that are common polymorphisms. These polymorphisms are detected in greater than 1% of the population, which are not
predicted to have any impact on protein function "%,

With the increasing demand of multi-gene panel sequencing and advanced sequencing technologies, such as whole-
genome sequencing (WGS) and whole-exome sequencing (WES), there has been a concomitant increase in the detection
of VUSs " ' 12 The detection frequency of VUSs ranges from 2% to 21% among laboratories ' '* *). VUSs are
sometimes referred to as unclassified variants (UVs). The two terminologies are interchangeable but the interpretation
differs between the two. VUSs refer to variants that may or may not be previously studied and their clinical significance is
unknown, whereas UVs refers to unstudied variants. VUSs can be either i) missense substitutions or in-frame deletions
and insertions (IFDIs), in which the effect on protein structure and function is unknown, ii) silent substitution or intronic
variants, which may potentially affect mRNA splicing, or iii) variants located in regulatory regions !'%.

The findings of a VUS always complicate genetic counselling and cancer risk estimation, as the clinical interpretation
remains unclear in relation to the phenotype of the patient, thus bringing challenges to family counselling and
decision-making regarding preventive surgery. A retrospective study ! has compared the risk management strategies of
patients with a deleterious mutation and patients with a VUS. Patients with a VUS were observed to have a twofold lower
likelihood of having risk-reducing surgery and lower rates of surveillance in their first five years of being tested.

In order to interpret the pathogenicity of UVs and VUSs, and hence their roles in tumour development, different
multifactorial likelihood models have been developed and applied in order to aid the interpretation '*'”. The
multifactorial likelihood model, also known as an integrated evaluation or posterior probability model, consists of three
components: prior probability of causality, combined likelihood ratios of observational data, and posterior probability of
causality '+10,

The prior probability of causality primarily focuses on analysing a VUS at the protein level by evolutionary conservation
and physiochemical properties of the amino acid '], If the substitution is located in a highly conserved position of the
protein, such as the RING and BRCT domains of BRCA1 or the DNA-binding domain of BRCAZ2, then in silico prediction
tools (e.g. Align-GVGD) can be used to calculate the prior probability of being pathogenic ', With respect to calculating
a combined likelihood ratio of observed data, four types of information can be included that comprise the following:
1) co-segregation analysis, ii) co-occurrence (in trans) with known deleterious variants, iii) personal and family history,
and iv) histopathology of the tumour ! '*!. Co-segregation analysis relies on genotype data from the pedigree; if most
family members who develop breast cancer carry the same VUS, it is highly suggestive that this VUS is disease-
causing ' ', The identification of co-occurrence (in trans) with known deleterious variant(s) is another powerful
approach as it helps exclude the pathogenicity of a VUS. Individuals who are homozygotes for pathogenic mutations in the
BRCA1 or BRCA2 genes are embryonically lethal or develop Fanconi anaemia, respectively % '%. Information regarding
particular features such as the age of onset, number of cancers and the types of cancers allows comparisons to be made
between families with a deleterious mutation and families with a VUS, hence establishing the likelihood of a VUS with the
disease phenotype ' '), Histopathological features of the tumour from VUS carriers can be compared with tumours from
patients who carry known pathogenic BRCA gene mutations. These features include estrogen receptor (ER) status, tumor
grade and cytokine status. By deriving the likelihood ratios from these data, and combining the prior probability, the
posterior probability of causality can be calculated for a VUS for classification purposes (see Figure 1) !'% !¢,

A number of studies have used multifactorial likelihood modelling for variant classification. Lindor et al. !'"” combined the
odds or likelihood ratios of segregation analysis results, variant co-occurrence, personal and family history and pathology
profiles to calculate the posterior probability of causality for each variant. This approach led to reclassifying VUSs into
five classes according to the IARC (International Agency for Research on Cancer) Working Group on Unclassified
Genetic Variants (classification classes will be discussed below). Kuo et al. ' used a multifactorial model that involved
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segregation studies (pedigree analysis), tumour histopathology assessment and bioinformatic analysis to predict the
pathogenicity of unclassified variants, followed by validation using functional assays. Walker et al. ' undertook a
comprehensive analysis of splice site variants using multifactorial likelihood analysis, together with family studies and in
silico bioinformatic predictions.

Final Cumulative

X

LR

Final Cumulative LR — LR, x LR, x LR; x LR,

Figure 1. Calculating the posterior probability of causality. LR: likelihood ratio; Posterior Probability of causality is
calculated by multiplying the prior probability of causality and the final cumulative likelihood ratios of a VUS. The Final
Cumulative Likelihood Ratio is the product of LRs derived from the results of each study; each study should be an
independent approach and is denoted as a subscript in the equation. Modified from Lindor et al. "%,

In diagnostic laboratories, the implementation of posterior probability modeling can be challenging: i) co-segregation
analysis usually requires data from a large sample set in order to establish strong likelihoods to interpret a VUS to be
disease-causing; ii) a VUS may be a hypomorphic variant that has subtle effect on protein function (embryonic lethality or
Fanconi anemia will not be expressed); iii) the interpretation of personal and family histories varies between different
pedigrees, hence different datasets are required from the families to interpret a VUS; iv) the histopathological features of
tumour between VUS carriers and pathogenic mutation carriers are unclear, so further investigation of larger sample sets
are required to support this correlation.

The classification system for VUSs vary slightly between countries, depending on the guidelines that the laboratory
adopts ''*). The majority of variant classification systems follow a five-category system: 1) clearly not pathogenic, 2) likely
not to be pathogenic, 3) uncertain significance, 4) likely to be pathogenic and 5) clearly pathogenic. The American College
of Medical Genetics (ACMG) suggests a classification system with an additional category for those variants that are not
expected to cause the disorder but are reported to be associated with a clinical presentation '), Regardless of the
classification system that is used, the interpretation of VUSs and the clinical management of patients carrying a VUS
remain a challenge.

Due to the limited resources of many diagnostic laboratories, the classification of VUSs usually involves three
components: i) locus-specific database (LSDB) searches; ii) population database searches; and iii) performing in silico
bioinformatic prediction analysis.

Searching LSDBs is essential in diagnostic laboratories in order to determine the clinical relevance of variants, hence
providing appropriate medical surveillance. However, discrepancies exist in the classification of variants so caution is
required 1. Population databases searches are recommended as the presence of a variant in the majority of the healthy
population can suggest non-pathogenicity. Any variant that is present at a frequency of at least one percent in the general
population is usually considered a polymorphism. The Single Nucleotide Polymorphism database (dbSNP) is one of the
common population databases; however, this database includes variants that are pathogenic as well as variants with
multiple classifications (e.g. the variant ¢.2612C>T in the BRCAL gene is listed as “benign, uncertain significance and
other”). Therefore, multiple population databases should be considered.

In silico bioinformatic prediction tools are designed to predict the impact of changes in either protein function or splicing
and they use different algorithms for the predictions. The algorithms of in silico protein bioinformatic prediction tools can
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be categorised into three major groups: i) evolutionary conservation and sequence homology-based, ii) protein
[22]

structure-based and iii) supervised learning
Against the background described above, 29 unique missense variants (see Table 1) detected by the authors in the
BRCAL/2 genes were analysed by interrogating multiple LSDs and in silico prediction programmes The aims here were
two-fold: first, to achieve a classification status for the 29 variants; and secondly, to determine an optimum strategy for
future variant analysis.

Table 1. Summary of missense variants

BRCA1 gene BRCA2 gene
Nucleotide change Predicted Protein change Nucleotide change Predicted Protein change
c.140G>A p-(Cys47Tyr) c.865A>C p-(Asn289His)
c.1067A>G p-(GIn356Arg) c.1114A>C p-(Asn372His)
c.1487G>A p-(Arg496His) c.2680G>A p.(Val894lle)
c.2077G>A p-(Asp693Asn) c.2971A>G p-(Asn991Asp)
c.2315T>C p-(Val772Ala) c.4258G>T p-(Asp1420Tyr)
c.2612C>T p.(Pro871Leu) c.5744C>T p.(Thr1915Met)
c.3113A>G p-(Glul038Gly) c.6100C>T p-(Arg2034Cys)
c.3119G>A p-(Ser1040Asn) c.6101G>A p-(Arg2034His)
¢.3548A>G p.(Lys1183Arg) c.6323G>A p-(Arg2108His)
c.4039A>G p.(Argl1347Gly) c.8149G>T p.(Ala2717Ser)
c.4535G>T p-(Ser1512Ile) c.8215G>A p-(Val2739lle)
c.4837A>G p.(Ser1613Gly) c.8351G>A p.(Arg2784GlIn)
c.4956G>A p-(Met165211le) c.8359C>T p-(Arg2787Cys)
c.5525T>C p.(Vall842Ala) c.8851G>A p.(Ala2951Thr)
c.9038C>T p.(Thr3013Ile)
2 Methods

Patients were referred to Genetic Health Services New Zealand (Northern Hub) for BRCAL/2 gene mutation screening.
DNA was extracted from peripheral ethylenediaminetetraacetic acid (EDTA) blood samples using the Gentra®
Puregene® Blood Kit (3 ml) (Qiagen, Venlo, Limburg, Netherlands), according to manufacturer’s instructions. Informed
consent underpinned the diagnostic referrals. The National Multi-Region Ethics Committee has ruled that cases of patient
management do not require formal ethics committee approval. The quality and quantity of extracted gDNA were measured
using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).

Genomic DNA from 120 patients were subjected to BRCAL1/2 gene sequencing using Massively Parallel Sequencing (MPS)
technology. Any identified variants were subsequently confirmed by bi-directional Sanger-based sequencing. Sequence
data was aligned against the reference sequences NC 000017.10 (BRCAL; LRG 292tl; NM 007294.3) and
NC_000013.10 (BRCA2; LRG_293t1; NM_000059.3) from the Human Genome assembly (HG19 build). HGVS v2.0
nomenclature was used to describe all variants with nucleotide numbering starting from the first nucleotide of the
translated sequence.

2.1 MPS sequence data

Amplicons encompassing BRCAL/2 gene exons with flanking intronic regions of 3-20bp upstream and downstream were
analysed using SeqPilot (SeqNext module, Version 3.4.2 Build 504; JSI medical systems GmbH). Customised settings, as
described in other studies, were used to achieve a Phred score equivalent of 33 12-3%,
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2.2 Sanger-based sequencing data

Amplicons encompassing BRCAL/2 gene exons and, if necessary, 20 bp of flanking intronic DNA were analysed using
commercially available software (Variant Reporter; Applied Biosystems, USA).

2.3 Pathogenicity prediction

The interrogation of databases and online bioinformatic programmes were carried out using Reference Sequences
indicated above, together with RefSeq protein and Uniprot accession numbers: BRCAL1 (NP_009225.1; P35398) and
BRCA2 (NP_000050.2; P51587).

2.4 Classification based on data from Locus-specific Databases (LSDs)

Five locus-specific databases were assessed for variant classification: Breast Cancer Information Core (BIC)
Database 3", Human Gene Mutation Database (HGMD®) Professional *), BRCA Share™ (formally known as
Universal Mutation Database [UMD]) *”), Leiden Open Variation Database (LOVD), and ex-VUS LOVDatabase (known
as LOVD-IARC) ¥,

The BIC database **! has been the leading locus-specific database for breast cancer susceptibility genes and, to date, more
than 1500 variants are listed in the database as of unknown clinical significance '* '***. This database has evolved to be
one of the variant classification platforms for scientists and clinicians **!. Prior to 2006, the pathogenicity of a variant was
solely based on the submitter’s data, which could be potentially biased due to insufficient data and incorrect use of the BIC
Classification system; interestingly, the BIC database uses a unique nomenclature to describe each variant. The HGMD®
Professional % is a paid subscription database that is maintained by the Institute of Medical Genetics in Cardiff,
containing comprehensive mutation data with published literature and in silico prediction results. The LOVD is
maintained by the Leiden University Medical Center, The Netherlands, in which variants are listed with dual HGVS and
BIC nomenclature, together with information from the literature. BRCA Share™ (formally known as UMD) #7 is
maintained by the French BRCA GGC Consortium and contains data collected from 16 French laboratories. Finally, the
ex-VUS LOVDatabase (known as LOVD-IARC) * contains missense variants that are listed in LOVD but have been
reclassified using a quantitative “posterior probability model”.

For simplicity, the classification of these missense variants in five locus-specific databases were categorised as “benign”,

99 CC

“pathogenic”, “uncertain”, and “not listed” (see Table 2).

Table 2. Definition of variant classifications between five locus-specific databases

®
HGMD ex-VUS
|lassificati Bl BRCA LOVD

Classification Professional c CA Share © LOVDatabase

Benign DP-1 l-n.eutral » Class 1
DF-1 Not Path 2-likely neutral Class 2
DFP-1 polymorphism

i DM?

Uncertain 3-UV Combination of +/2 , /2

DP-2 Unknown Class 3
and/or ?/?
DFP
i DM

Pathogenic 4-likely causal Class 4
bp Path 5-causal 7 Class 5
FTV

Not listed Not listed Not listed Not listed Not listed Not listed

Note. HGMD® = Human Gene Mutation Database Professional 2015.1. Variant Classes: DM = disease causing mutation, DM? = disease causing mutation?, DP=
disease-associated polymorphism; DFP = disease-associated polymorphism with additional supporting functional evidence, FTV = frameshift or truncating variant,
1 = associated with a decreased risk, 2 = functional polymorphism; BIC = breast cancer information core database. Variant Classes: Not Path = Not pathogenic, Unknown =
unknown pathogenic significance, Path = pathogenic; LOVD = leiden open variant database. Variant Classification: +/? = predicted to be deleterious, -/? = predicted to be
neutral,?/? = inconclusive or no comment on pathogenicity; ex-VUS LOVDatabase Variant Classes: Class 1 = no known pathogenic, Class 2 = probably no pathogenicity,
Class 3 = effect unknown, Class 4 = probably pathogenic, Class 5 = pathogenic
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2.5 Classification based on data from population databases

Three population databases were accessed for allele frequency data: Database of Single Nucleotide Polymorphisms
(dbSNP) %33 Exome Aggregation Consortium % and Exome Variant Server **\. Variants listed with a minor allele
frequency (MAF) of 1% or greater were assigned a benign classification. Data from the 1,000 Genomes project was
available on the dbSNP database, therefore a separate entry was not carried out.

2.6 Classification based on data from in silico splice site bioinformatic
analysis
Four in silico splice prediction programmes were used to check for possible splicing effects of the missense variants: the

Splice Site Prediction by Neural Network online tool of the Berkeley Drosophila Genome Project °®*"); the Alternative

Splice Site Predictor °* **! tool; and Human Splicing Finder [***! using the prediction algorithms of HSF and MaxEnt **],

Prediction outcomes from these programmes were compared for each variant.

2.7 Classification based on data from in-silico protein bioinformatic
analysis

Thirteen online in silico protein analysis programmes were used to predict the pathogenicity of each missense variant and
the prediction algorithm for each of these programmes is shown in Table 3.

Table 3. Summary of in silico protein prediction program algorithms used in our analysis
Type of prediction algorithms

Online in silico

ST AT Programmes input Evolutionary conservation prota:n sequence & Supqvised
& sequence homology protein structure learning

PolyPhen2 UniProt annotation v

Mutation Assessor  RefSeq Protein ID v

I-Mutant 2.0 FASTA Protein sequence v

PhD SNP UniProt annotation ‘/ \/

MutPred FASTA Protein sequence v v

SNP& GO UniProt annotation v v

PANTHER FASTA Protein sequence 4/

Align-GVGD FASTA Protein sequence  (/ !

SNAP FASTA Protein sequence v v

SIFTBLink RefSeq Protein ID v

PROVEAN RefSeq Protein ID v

Mutation Taster ~ NCBI Gene ID v v

Note. V' together with biophysical characteristics of the amino acid; \” together with data from different mutation databases. PolyPhen2 = polymorphism phenotyping v2; Mut
Ass = mutation assessor; PhD-SNP = predictor of human deleterious single nucleotide polumorphisms; MutPred = application tool for classifying an amino acid substitution as
disease-associated or neutral; SNPs&GO = server for predicting human disease-related mutations in proteins with functional annotations; PANTHER = protein analysis
through evolutionary relationships; Align-GVGD = Align-Grantham variation grantham deviation; SNAP = predicts effect of non-synonymous polymorphisms on protein
function; SIFTBLink = sorting intolerant from tolerant analysis on single protein using precomputed BLAST from NCBI Blink; PROVEAN = protein variation effect
analyzer.

) [43]

Polymorphism Phenotyping Version 2 (PolyPhen 2 predicts the effect of a missense variant on protein structure and

function, based on sequence conservation using a Naive Bayes Classifier, with prediction outcomes as either “Probably
damaging”, “Possibly damaging”, or “Benign” for the variant of interest. Two pairs of trained PolyPhen-2 models were
available: HumDiv- and HumVar-trained models. HumDiv model predicts pathogenicity by comparing Mendelian disease
variants to the divergence of close mammalian homologs of the human protein, whereas the HumVar model compares all
disease-associated variants to reported benign polymorphisms. Predictions made using the HumVar model are considered

more suitable for diagnostic purposes.
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Align-GVGD " *I predicts the pathogenicity of missense variants based on multiple protein sequence alignments and the
biophysical characteristics of the amino acids. The classification ranges from Class C65 (most likely disease-causing) to
Class CO (less likely disease-causing).

Mutation assessor % predicts the functional effect of a missense variant on a protein based on evolutionary conservation
patterns derived from multiple sequence alignments.

I-Mutant 2.0 "7 ** assesses the stability of a missense variant based on the changes in protein sequence and structure and
classifies the variant as either “neutral” or “disease” with a reliability index that ranges from 0 (less reliable) to 9 (most
reliable).

MutPred ' predicts the pathogenicity of a missense variant based on the protein sequence and structure, and classifies the
change as either disease-associated (denoted as D) or neutral (denoted as N), with a probability score.

SNPs&GO B predicts the pathogenicity of a missense variant based on information derived from the sequence and
function of a protein from the Gene Ontology (GO database). The prediction result is presented as either a neutral
polymorphism or a disease-related polymorphism with a reliability index ranging from 0 (unreliable) to 10 (reliable).

Protein analysis through evolutionary relationships (PANTHER) ' %%

predicts the functional impact of a missense variant
on the protein based on the alignment of evolutionarily-related proteins, and calculates a subSPEC (substitution
position-specific evolutionary conservation) score ranging from -10 (most likely to be deleterious) to 0 (neutral), while -3

is the cut-off value for functional significance.

[53]

Screening for non-acceptable polymorphism (SNAP) "~ predicts the effect of a missense variant on protein function and

structural annotation, which classifies the variant as non-neutral or neutral with reliability index and accuracy calculated.

Predictor of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP) 5 works in a similar fashion iMutant 2.0
as it assesses sequence homology to classify a missense variant as disease-related (Disease) or a neutral polymorphism
(Neutral), with a reliability index.

Protein variation effect analyser (PROVEAN) ¥ predicts the functional impact of a missense variant. The PROVEAN
Human Protein Batch tool compares homologous sequences between human and mouse and generates a PROVEAN score
with a predefined threshold of -2.5. A deleterious prediction corresponds to a PROVEAN score of less than or equal to -2.5,
otherwise it is considered neutral. This programme also provides a prediction based on the SIFT algorithm.

Sorting intolerant from tolerant (SIFT) blink %

predicts the pathogenicity of a missense variant based on the sequence
homology from multiple sequence alignments, and a conservation value and scaled probability are calculated. The variants
are classified as either “tolerated” or “affect protein function” with a SeqRep score. This score refers to the fraction of
sequences containing one of the basic amino acids. Poorer predictions are made from unaligned sequences or are severely

gapped for the position of interest; the poorer the predictions, the lower the SeqRep scores.

MutationTaster2 P” classifies missense variants as either neutral or disease-causing, with an associated P value. The
P value refers to the probability of the prediction, which is not the probability of error as used in t-test statistics. The closer
to the value of 1, the higher the security of the prediction, but not the reliability of the prediction; incorrect predictions are
not usually reflected by low probabilities. This programme assesses evolutionary conservation and integrates data from
different databases: dbSNP, 1,000 Genome, ClinVar and HGMD® Pro, in order to provide a comprehensive analysis of the
variant.

Published by Sciedu Press 97



http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2016, Vol. 2, No. 1

3 Results

3.1 Searching Locus-Specific Databases (LSDs)

Twenty-nine missense variants were checked for pathogenicity in five locus-specific databases. Detailed data are given in
Table 4. The results for each variant are shown graphically in Figure 2 to provide a visual summary regarding the
classification of each variant.

Table4. Classification of 29 BRCAL/2 gene missense variants in five locus-specific databases

BRCAL gene
. HGMD®
Nucleotide E: s?;ied ;(r) ;)fs onal BIC BRCA Share lE):t\z;tl)Dase (EXO\\//L[J)Sat abase Nucleotide
c.140G>A p-(Cys47Tyr) DM Not listed 5 - Causal Not listed  Not listed
c.1067A>G  p.(GIn356Arg) DP Unknown 1 - Neutral Mixed ?2&27 &7 1
c.1487G>A  p.(Argd496His) DM? Unknown 1 - Neutral Mixed -?&? 1
c.2077G>A  p.(Asp693Asn) DP Not Path 1 - Neutral Mixed -7 & 7 &+/? 1
c.2315T>C p.(Val772Ala) DM Unknown 1 - Neutral Mixed -/? & 27 &+/? 1
c.2612C>T p.(Pro871Leu) DFP-1 Not Path 1 - Neutral Mixed -/? & ?/? &+/?  Not listed
c.3113A>G  p.(Glul038Gly)  DP Not Path 1 - Neutral Mixed ?2&U?&HT 1
c¢.3119G>A  p.(Ser1040Asn) DM? Unknown 1 - Neutral Mixed -?7&7? 1
c.3548A>G  p.(Lys1183Arg) DP-1 Not Path 1 - Neutral Mixed /?2&27 &7 1
c.4039A>G  p.(Argl347Gly) DM? Unknown 1 - Neutral Mixed 202, -7, +/? 1
c.4535G>T  p.(Serl512lle) DM? Not Path 1 - Neutral Mixed -?&7? 1
c.4837A>G  p.(Serl613Gly) DM? Not Path 1 - Neutral Mixed 22, -2, +/? 1
c.4956G>A  p.(Metl652lle) DM? Unknown 1 - Neutral Mixed 2, -7, +/? 1
¢.5525T>C p-(Val1842Ala) Not listed Not listed Not listed Not listed Not listed
BRCA2 gene
. HGMD®
Nucleotide i:;j;ied Z(r):;ona] BIC BRCA Share Ilsgt\;:ase (Ij)(o\\//LIJDitabase Nuclectide
c.865A>C p-(Asn289His) DP-1 Not Path 1 - Neutral Mixed -7 & 7 &H/? Not listed
c.1114A>C* p.(Asn372His) DFP Not listed 1 - Neutral Mixed -7 & 2?7 Not listed
¢2680G>A  p.(Vals94lle)  Not listed Unknown 2~ Likely Neutral /2 1
Neutral
c.2971A>G  p.(Asn991Asp) DM? Not Path Polymorphism Mixed -7 & 7 &H/? Not listed
c.4258G>T  p.(Aspl420Tyr) DM? Not Path 1 - Neutral Mixed -7 & ?7? &+/? 1
c.5744C>T p-(Thr1915Met)  Unknown Unknown 1 - Neutral Mixed -?7&? Not listed
¢.6100C>T p-(Arg2034Cys) DM? Unknown 1 - Neutral Mixed -7 &7 1
c.6101G>A  p.(Arg2034His) DM? Unknown  Not listed Not listed Not listed
c.6323G>A  p.(Arg2108His) DM? Unknown 1 - Neutral Mixed -7 & 21?7 1
¢.8149G>T p-(Ala2717Ser)  DM? Not Path 1 - Neutral Mixed -7 & ?? 1
c.8215G>A  p.(Val2739l1le) Not listed Not listed 3-UV Mixed -7 & ?? Not listed
c.8351G>A  p.(Arg2784Gln) DM Unknown 3-UV Pathogeni  +/? Not listed
c.8359C>T  p.(Arg2787Cys) Not listed Unknown 3-UV Pathogeni  +/? Not listed
c.8851G>A  p.(Ala2951Thr) DM? Not Path 1 - Neutral Mixed -?7&7? Not listed
¢.9038C>T p-(Thr3013Ile) DM? Not Path 1 - Neutral Mixed -?7&7? Not listed

Note. HGMD® = human gene mutation database professional 2015. Variant Classes: DM = disease causing mutation, DM? = disease causing mutation?, DP= disease-
associated polymorphism; DFP = disease-associated polymorphism with additional supporting functional evidence, 1 = associated with a decreased risk; BIC = breast cancer
information core database. Variant Classes: Not Path = not pathogenic, Unknown = unknown pathogenic significance, Path = pathogenic; LOVD = leiden open variant
database. Variant Classification: +/? = predicted to be deleterious, -/? = predicted to be neutral, ?/? = inconclusive or no comment on pathogenicity.
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5 1 5 1 5 1 s 1 5 1 5 1 ] 5 1
1 L— 5
Fl 4 2 4 4 4 by = 4 A 2
i o2 b 3 ) ]
BRCAL'c 140G>A BRCAL:c 1067TA>G BRCALc 1457G=A BRCALc 1077G>A BRCALc1315T>C BRCAlc1611C>T BRCALcII3A>G BRCAL:c3119G>A
s L s 1 5 1 5 1 1 . . .
l ! Breast Cancer Information Core (BIC) Benign
o A 5 1
y ] > + Human Gene Mutation Database (HGMD®) Professional Urdmawn
4 2 4 2 4 2 4 : -
JBRCA Share™ 4 2/ Ml Pathogerac
3 3 3 3 s - - :
. . . “Leiden Open Variation Database (LOVD) Hothigted
BRCAL'c 3M8A2G BRCALc40IA>G BRCALc4535C>T BRCALc4331A>G
s i [ 1 5 1 5 1 s L 5 1 L1 1 s 1
4 4 2 4 2 3 4 2 4 2 4 4 2
E 3 E | N ) = o) 1Y L
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Figure 2. Diagrammatic representation of missense variant classifications in five locus-specific databases

3.2 Searching population databases

Three population databases were assessed for the minor allele frequency of each missense variant. Of the 29 variants, 12
variants could be classified as “likely to be benign” based on their allele frequency. The results for these variants in each
database are summarised in Table 5. Detailed data are provided in Table 6.

Table 5. Summary of data from three population databases
Number of variants

dbSNP ExAC EVS
Not listed or N/A 10 3 4
MAF >1% 10 12 13
MAF <1% 9 14 12

Note. dbSNP: Database of Single Nucleotide Polymorphisms 2 33); ExAC: Exome Aggregation Consortium *; EVS: Exome Variant Server ).

3.3 In silico splice site bioinformatic analysis

As mentioned earlier, four in silico splice site prediction programmes were used to assess possible splicing effects of the
missense variants. None of the variants was predicted to result in a splicing effect (data not shown).
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3.4 In silico protein bioinformatic analysis
Thirteen in silico protein prediction programmes were used to predict the pathogenicity of the missense variants, the
results are shown graphically in Figure 3. Interestingly, certain in silico protein prediction programmes (€.g. SNPs&GO)
appear to overestimate the pathogenicity of a variant (see Figure 4).

Table 6. Data (Minor allele frequency) of 29 missense variants from three population databases

BRCAL gene BRCAZ2 gene
Nucleotide  dbSNP EXAC EVS Nucleotide dbSNP ExAC EVS
c.140G>A  N/A Not listed Not listed c.865A>C 7.37% 5.18% 3%
c.1067A>G  2.18% 4.41% 4.59% c.1114A>C 24.94% 27.79% 23%
c.1487G>A  N/A 0.05% 0.06% ¢.2680G>A N/A 0.00% 0.038%
c2077G>A  3.35% 5.68% 5.43% c.2971A>G 8.01% 5.34% 4%
¢2315T>C  N/A 0.01% 0.02% c.4258G>T 0.40% 0.68% 5%
c2612C>T  45.61% 41.00% 49.32% ¢.5744C>T 0.86% 1.79% 2%
c3113A>G  45.61% 34.29% 27.90% ¢.6100C>T 0.14% 0.32% 0.40%
c3119G>A  0.98% 1.32% 1.65% c.6101G>A N/A 0.00% 0.40%
c.3548A>G  33.57% 34.90% 29.52% c.6323G>A 0.38% 0.13% 0.031%
c.4039A>G  0.06% 0.40% 0.48% ¢.8149G>T 0.06% 0.12% 0.15%
c4535G>T  0.06% 0.22% 0.28% c.8215G>A N/A 0.00% N/A
c4837A>G  35.58% 34.96% 29.82% c.8351G>A N/A 0.00% 0.02%
c.4956G>A  1.12% 1.76% 1.08% ¢.8359C>T N/A N/A N/A
¢.5525T>C Not listed  Not listed Not listed c.8851G>A 0.01% 0.79% 0.44%
¢.9038C>T N/A 0.02% 0.046%

Note. N/A = minor allele frequency not available; dbSNP = Database of Single Nucleotide Polymorphisms (dbSNP, 2015; Sherry et al., 2001), ExAC = Exome Aggregation
Consortium (ExAC, 2015); EVS = Exome Variant Server (EVS, 2015). Minor allele frequency (MAF) of each variant is presented as a percentage for direct comparison. MAF
value of greater than 1% is highlighted in grey.
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Figure 3. Prediction outcomes using 13 in silico protein bioinformatic programmes, together with Grantham Score
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Figure 4. Percentage of 29 missense variants predicted to be pathogenic using in silico protein prediction programmes.
PolyPhen2 = polymorphism phenotyping v2; Mut Ass = mutation assessor; PhD-SNP = predictor of human deleterious
single nucleotide polumorphisms; MutPred = application tool for classifying an amino acid substitution as disease-
associated or neutral; SNPs&GO = server for predicting human disease-related mutations in proteins with functional
annotations; PANTHER = protein analysis through evolutionary relationships; Align-GVGD = Align-Grantham variation
grantham deviation; SNAP = predicts effect of non-synonymous polymorphisms on protein function; SIFTBLink =
sorting intolerant from tolerant analysis on single protein using precomputed BLAST from NCBI Blink; PROVEAN =
protein variation effect analyzer.

3.5 Integrated data analysis

A simplistic approach was taken to represent the diversity of “calls” that were made for the 29 missense variants. This
approach gave equal weight to each “call” that was made in LSDs, population databases and in silico predictions. The
“calls” were assigned to one of three classifications, as shown in Table 7. The results of this analysis are shown in Table 8.
In the case of BRCAL: c.140G>A, 23% of all calls were assigned a classification of “benign” while 54% were classified as
“pathogenic”.

Table 7. Definition of classifications for integrating data from different categories
In silico splicing prediction In silico protein prediction

Classification LSD Population Data
results results
Benign Benign MAF >1% No effect on splicing Benign
Likely to be beni d likely t
Uncertain Uncertain Not listed or MAF <1% - ikely to e. enign and likely to
be pathogenic
Pathogenic Pathogenic - May affect splicing Pathogenic

Note. LSD= locus-specific databases; MAF = minor allele frequency

The integrated data analysis results highlight the discordant prediction outcomes in classifying variants, which led us to the
following questions:

1)  Should VUS classification rely on information obtained from one database? If not, then how many and which
locus-specific database should be accessed for classification?

2) What is the ideal number, and type, of in silico prediction program to use for classifying BRCAL/2 gene
variants?

In order to answer these questions, further data analysis was carried out for the 29 missense variants. First, the data entries
from five locus-specific databases were compared to determine the “gold standard” database for variant classification
(see Figure 5). The BIC database **°" was considered at the outset of the research presented here to be the principal

Published by Sciedu Press 101



http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2016, Vol. 2, No. 1

database; however, during the course of this study, data in the BIC database was found to be “out-of-date”. The HGMD®

Professional was found to over-score the variants, with common SNPs listed as mutations °*.

Table 8. Summary of integrated data for 29 missense variants

Classification
Nucleotide change
Benign Uncertain Pathogenic Not listed

BRCA1:c.140G>A 23% 0% 54% 23%
BRCA1:c.1067A>G 58% 8% 35% 0%
BRCA1:c.1487G>A 62% 23% 12% 4%
BRCA1:c.2077G>A 85% 4% 12% 0%
BRCA1:¢c.2315T>C 42% 23% 31% 4%
BRCA1:c.2612C>T 88% 8% 0% 4%
BRCA1:c.3113A>G 65% 12% 23% 0%
BRCA1:c.3119G>A 62% 19% 19% 0%
BRCA1:¢c.3548A>G 96% 4% 0% 0%
BRCA1:¢.4039A>G 54% 31% 15% 0%
BRCAI1:¢c.4535G>T 54% 27% 19% 0%
BRCAI1:c.4837A>G 77% 15% 8% 0%
BRCA1:c.4956G>A 81% 12% 8% 0%
BRCA1:¢.5525T>C 31% 8% 35% 27%
BRCA2:¢c.865A>C 73% 12% 8% 8%
BRCA2:c.1114A>C 46% 15% 8% 31%
BRCA2:¢c.2680G>A 73% 15% 4% 8%
BRCA2:c.2971A>G 85% 8% 4% 4%
BRCA2:¢c.4258G>T 50% 23% 27% 0%
BRCA2:¢c.5744C>T 65% 15% 12% 8%
BRCA2:¢c.6100C>T 46% 27% 27% 0%
BRCA2:c.6101G>A 58% 19% 8% 15%
BRCA2:c.6323G>A 58% 27% 15% 0%
BRCA2:c.8149G>T 54% 27% 19% 0%
BRCA2:¢c.8215G>A 62% 15% 4% 19%
BRCA2:¢c.8351G>A 31% 23% 38% 8%
BRCA2:¢c.8359C>T 35% 15% 31% 19%
BRCA2:c.8851G>A 38% 31% 23% 8%
BRCA2:¢.9038C>T 50% 23% 19% 8%

Six of the 29 missense variants were listed as disease-causing mutations in the HGMD® Professional database. BRCA
Share™ classified the majority of the variants, with only 5 of the 29 missense variants recorded as “classification unknown”
(comprising those of “uncertain significance” and “not listed””). The data available from BRCA Share™, based on the
French population, is not a true reflection of the general population. Only three of the 29 missense variants were not listed
in the LOVD database; however, more than three-quarters of the variants were listed as “unknown clinical significance”,
so this database was of limited use. In contrast, the ex-VUS LOVDatabase, which uses a rigorous posterior-probability
approach, classified 17 of the 29 missense variants as benign; the remaining 12 missense variants were unreported in this
database. Due to the perceived clarity of the classifications made in the ex-VUS LOVDatabase, it was considered to be the
“gold standard” database for variant classification.
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Figureb5. Classification categories for 29 missense BRCAL/2 gene variants recorded in five locus-specific databases

3.6 A comparison of prediction results against entries in the ex-VUS
LOVDatabase

In order to resolve the classification of the 12 missense variants that were not present in the ex-VUS LOVDatabase, it was
decided to determine which in silico protein prediction programmes yielded variant classifications that were consistent
with those reported in the ex-VUS LOVDatabase. In this way it was thought that unreported variants in the ex-VUS
LOVDatabase could be confidently assigned a classification category. The splicing effect and population data were
excluded from this strategy as all splicing predictions were uninformative for all variants and the weight given to using
minor allele frequency for variant classification was unclear at the time of this study.

B s
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Figure 6. Percentage of variants that showed classifications that were consistent with those reported in the ex-VUS
LOVDatabase. BIC = breast cancer information core; HGMD® Pro = human genetic mutation database professional 2015;
LOVD = leiden open variant database; PolyPhen2 = polymorphism phenotyping v2; Mut Ass = mutation assessor;
PhD-SNP = predictor of human deleterious single nucleotide polumorphisms; MutPred = application tool for classifying
an amino acid substitution as disease-associated or neutral; SNPs&GO= server for predicting human disease-related
mutations in proteins with functional annotations; PANTHER= protein analysis through evolutionary relationships;
Align-GVGD = Align-Grantham variation grantham deviation; SNAP = predicts effect of non-synonymous
polymorphisms on protein function; SIFTBLink = sorting intolerant from tolerant analysis on single protein using
precomputed BLAST from NCBI Blink; PROVEAN = protein variation effect analyzer.
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Pursuing the above strategy indicated that the BRCA Share™ database showed 100% consistency with the classification of
reported variants in the ex-VUS LOVDatabase. In addition, the predictions from four protein bioinformatic programmes
showed a high degree of consistency with the classification of reported variants in the ex-VUS LOVDatabase: PhD-SNP
(88%), MutPred (75%), SIFTBLink (81%) and Mutation Taster (100%). These four programmes covered the three types
of protein prediction tools: sequence/evolutionary conservation-based, protein-structure-based and supervised learning.
Figure 6 graphically shows the percentage of variants with classifications consistent with those reported in the ex-VUS
LOVDatabase.

3.7 Integrating the data from selected complementary database and in

silico protein prediction programmes

For those variants not listed in the ex-VUS LOVDatabase, data from BRCA ShareTM and the classification provided by
the in silico protein prediction programmes (PhD-SNP, MutPred, SIFTBLink and Mutation Taster) were combined to
provide an the interpretation of these variants. The results are shown graphically in Figure 7. This approach classified one

variant to be pathogenic, four variants to be benign and two variants to be “likely benign”, leaving four variants of
uncertain significance (BRCA1:¢.5525T>C, BRCA2:¢.8359C>T, BRCA2:¢c.8851G>A, and BRCA2:¢.9038C>T).

Pathogeni Benign. Uncertain Significance. Benign.
5 2 5 1 5 q
4 2 : . 2
2 3
SRR NGA PRS0l T BRCAL:C 5525T>C BRCALC.865A>C
Likely Benign. Benign. Benign Likely Benign
H 1 s L s 1 5 1
4 2 ] 2 a 2 4 2
3 3 3 3
BRCA2:C.1114A>C BRCA2:¢.2971A55 BRCA2:C.S144C>T BRCAZ:C.6101G>A

Uncertain Significance.  Uncertain Significance.  Uncertain Significance
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“PhD-SNP Uninown
A 2 2 4 2 ‘MutPred W rathopenic
3 3 ‘SIFTBLink. Mot listed
BRCAZ2:c.8851G>4 BRCA2:C.9038C>T

BRCA2:C.8359C>T

Figure 7. Reclassification of variants using BRCA Share™ database and four in silico protein prediction programs.
SIFTBLink = sorting intolerant from tolerant analysis on single protein using precomputed BLAST from NCBI Blink;
PhD-SNP = predictor of human deleterious single nucleotide polumorphisms; MutPred = application tool for classifying
an amino acid substitution as disease-associated or neutral.

4 Discussions

Here we demonstrate the problems commonly encountered when interpreting VUSs: the disparity between databases and
the discordance in prediction results. Data integration was shown to help in determining the pathogenicity of a variant.
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However, the analysis was carried out using a relatively small sample size and was limited to missense variants. Further
analysis should be undertaken using a larger sample set with different types of VUSs. Furthermore, the control group was
not well established in the analysis. Control cohorts using clearly pathogenic and clearly benign classifications could be
considered to determine those in silico protein prediction programs that should be used for classifying variants in the
BRCAL/2 genes. As has been described elsewhere *?), the most appropriate repertoire of in silico programmes to use must
be determined for each gene.

In the diagnostic environment, data from locus-specific databases and in silico prediction programmes are given weight in
establishing the classification of a VUS and hence aiding clinicians in supporting a diagnosis and for subsequent predictive
testing in family members of the proband. Population data has gradually been implemented as part of the analysis
approach in diagnostic laboratories; however, allele frequency data are ethnic-specific. Furthermore, while data can be
aggregated from a disease cohort, caution should be taken during interpretation.

The current classification approaches using population allele frequencies, entries in disease databases and computational
analysis cannot always clearly classify missense variants. Segregation data, as well as functional data, would be beneficial
to assist in the interpretation of the clinical significance of variants.

The newly introduced online visualisation tool, BRCA1Circos **!

, might change the face of the current analysis approach
in diagnostic laboratories. This tool compiles and displays all the functional data for all documented variants in the BRCA1
gene, which allows direct comparisons between functional data and strengthens the classification system of VUSs.
Furthermore, an international collaboration by the ENIGMA (Evidence-Based Network for the Interpretation of Germline
Mutant Alleles) Consortium has been established to facilitate studies of the clinical significance of VUSs . The
consortium comprises six working groups focusing on either: VUS interpretation for cancer risk, VUS classification in
relation to clinical details, ENIGMA database maintenance, functional assays for VUS, histopathological studies of VUS,
and large-scale splicing studies. Recently published guidelines by the American College of Medical Genetics (ACMG) has
introduced a comprehensive evaluation system for variant interpretation [*’. The system involves assessing the strength of
all the available evidence and integrating it to classify a sequence variant by following pre-defined criteria. Furthermore,
two different systems have been suggested to classify variants as “pathogenic or likely pathogenic” and “benign or likely
benign”. This published system reflects the increasing complexity of data analysis in a clinical setting, and suggests that
the pathogenicity of VUSs should be determined through integrating and interpreting the data as a whole. With
increasingly accessible functional data, the multidisciplinary approach by the ENGIMA consortium, and a more
comprehensive classification system, determining the pathogenicity of VUS should improve in the near-future.
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