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Abstract 
Background: Hyperspectral image processing has been applied to many aspects of astronomical and earth science 

research. Furthermore, advances in computed tomographic imaging spectroscopy and diffraction grating design have 

allowed biological applications for non-invasive tissue analysis. Herein, we describe a hyperspectral computed 

tomographic imaging spectroscope (HCTIS) that provides high spatial, spectral and temporal resolution ideal for imaging 

biological tissue in vivo. 

Methods: We demonstrate proof-of-principle application of the HCTIS by imaging and mapping the microvascular 

anatomy of the retina of a model organism (rabbit) in vivo. The imaging procedure allows rapid and dense spectral 

sampling, is non-toxic, non-invasive, and easily adaptable to a commercially available fundus camera system. 

Results: HCTIS provides highly co-registered temporal, spatial and spectral data with resolution capable of reconstructing 

the fine vascular tree of the rabbit retina in vivo.  

Conclusions: We show that HCTIS allows for reliable and reproducible tissue classification and detection using signature 

discriminant analysis. Future applications of this system may provide promising diagnostic methods for diseases of many 

tissues. 
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1 Introduction 
Hyperspectral imaging systems, which are systems capable of detecting unique spectral information for identification 
purposes, were first pioneered for use in fields such as the earth and planetary sciences [1]. Since then, hyperspectral 
imaging systems have emerged in fields including ophthalmology [2-4], oncology [5, 6], fluorescence microscopy [7], 
bioinformatics [8], vascular physiology [9, 10], archeology and art conservation [11], and even forensic science [12, 13]. 
Investigators are likely drawn to the technology for its non-invasive means of detecting and characterizing an array of 
biological and non-biological materials. Among other systems developed, the hyperspectral computed tomographic 
imaging spectrometer (HCTIS) was designed specifically for the non-invasive imaging and characterization of the 
microvasculature in vivo at high speeds and high resolution [14]. 

In contrast to the HCTIS, most spectroscopy methods in the biological sciences use band sequential scanning, which limits 
temporal resolution and spectral range and confounds spatial registration of data. This results in a limited signal-to-noise 
ratio, and an increased susceptibility to noise from pigmentation, optical media, and scatter can further confound  
results [2, 15, 16]. Moreover, these methods require a priori knowledge of characteristic target spectra, which are frequently 
not available. 

The HCTIS combines state-of-the-art two-dimensional (2D) diffraction gratings with computed tomographic algorithms 
to allow simultaneous (< 3 msec) acquisition of spectra over 450-750 nm with approximately 4 nm spectral  
resolution [14, 16, 17]. There are a number of advantages to this hyperspectral imager over multi-wavelength or band- 
sequential scanning devices. First, there are no moving parts, nor is spatial or spectral scanning required. Therefore, there 
is also no need for image registration due to image movement. Second, the 2D diffraction grating design allows dense 
sampling of the spectral data (up to 76 bands) within the 3 msec duration of a simple snapshot (photographic) image. Third, 
the computed tomographic imaging algorithms reconstruct images with high spatial-spectral resolution and allow detailed 
correlations of image targets that are spectrally, spatially and temporally co-registered. Fourth, the simple optical design of 
the hyperspectral camera is adaptable to many imaging instruments that are commercially available [9, 16]. Lastly, the dense 
hyperspectral data set allows application of hyperspectral signature discriminant analysis that is otherwise not possible [18]. 
Due to the nontoxic, non-invasive nature of this imaging modality, as well as its rapid image acquisition, the HCTIS can be 
used in vivo and has important applications in the study of anatomy, circulatory physiology, and tissue metabolism. Here, 
we integrate HCTIS with a standard, FDA-approved fundus camera to image the microvasculature inside the intact rabbit 
eye (in vivo). This proof-of-principle application shows that the HCTIS can provide highly co-registered temporal, spatial 
and spectral data with sufficient resolution to allow reconstruction of the fine vascular tree. We also demonstrate that we 
can empirically identify retinal vessels using hyperspectral signature discriminant analysis without previous knowledge of 
any of the tissue’s spectral components. Future application of this system in research and clinical settings can provide 
unique and useful information. 

1.1 Hyperspectral signature discriminant analysis 

1.1.1 Spectral angle mapper (SAM) 
A popular way of measuring the discriminatory capacity of hyperspectral signatures is the spectral angle mapper [19]. This 
method has been thoroughly investigated [20-22] and is a proven method for measuring the similarity between two or more 
hyperspectral signatures. This measurement also provides a discriminatory measure between two points within an image 
and is represented as the spectral angle (θ) in radians between the target spectrum and reference spectrum: 

ߠ                                                                             ൌ cosିଵ ቀ ௦௥√௦௦√௥௥ቁ                                                                                              (1) 

where s is the hyperspectral reference spectrum in the library (or tissue) and r is the hyperspectral signature of the target 
grid value (voxel) within the image data. Moreover, the spectral angle can be viewed graphically as the angular 
displacement of the spectral profile between two points as shown in Figure 1.  
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RSDPB [24] gives a straightforward method of calculating the probability that each voxel in a hyperspectral image is 
similar to a reference point in the image. 

To calculate RSDPB, we assume ሼ࢙௞ሽ௞ୀଵ௄  where K is the number of spectral signatures (reference points) for a given image, 
otherwise referred to as the signature library (Δ). Thus, the RSDPB is calculated as follows: 

                                                                
௧,∆ሺ݇ሻܤܲܦܴܵ ൌ 	݉ሺݐ, ௞ሻݏ ∑ ݉൫ݐ, ൯௄௝ୀଵ൘࢐ݏ                                                              (8) 

where t is the target voxel in the hyperspectral image and m (t,sk) is the discriminatory measure between the target voxel 
and the reference signature. It is noted that m (t,sk) can be calculated with either SAM or SID. 

Consequently, as the RSDPBt,Δ value becomes smaller, there is a higher likelihood of similarity to a particular reference 
signature. For easier graphical illustration, however, the value for 1 - RSDPBt,Δ is plotted in subsequent surface plots, such 
that as values for 1- RSDPBt,Δ increase, so too, does the likelihood of similarity to the reference signature increase. 

2 Methods 
All animal experiments were conducted in accordance with the Institutional Animal Care and Use Committee (IACUC) at 
the University of Southern California. New Zealand pigmented and albino rabbits weighing 3-4 kg were used in the 
following experiments. Two sets of data were acquired from 2 different rabbits that were anesthetized and sedated with the 
standard intramuscular doses of xylazine and ketamine. The eyes were pharmacologically dilated for imaging. Imaging 
was performed using a customized hyperspectral camera (Reichert Technologies, Inc., Buffalo, NY) linked to the port of a 
standard Zeiss FF450 IR fundus camera. The HCTIS detailed herein has been previously reported [25]. In essence, the 
HCTIS acquires spatial and spectral data by imaging a scene through a 2D grating; from this image, multiple, spectrally 
dispersed images of the scene, in this case the retina, are projected onto a focal plane array (Retiga 2000R Camera; 
QImaging, Inc., BC, Canada). Prior to image processing, the dispersion pattern of the spectra onto the array is calibrated 
using a monochromator. All images acquired are recorded and subsequently stored on a computer using standard image 
acquisition software (QImaging, Inc., BC, Canada). The imaging device acquires roughly 76 spectral bands in < 3 msec 
using a standard fundus flash. Thus, this rapid image acquisition offers several advantages: first, it improves signal-to- 
noise, as images are no longer hindered by movement from microsaccades, and second, it eliminates the need for image 
registration, thereby reducing motion artifact and pixel misregistration. Furthermore, since all spectral information is 
collected within a single snapshot, there are no moving parts in the system, and no need for time-intensive scans. All 
spectral information is spatially and temporally co-registered on the focal plane array. Special algorithms, based on 
iterative expected-maximization algorithms, are thus used to reconstruct the spectrally dispersed images into a three- 
dimensional (3D) map of spatial (X-Y axis) and spectral (Z-axis) information that is based on individual wavelength 
information [25]. This 3D representation of spatial and spectral information is sometimes termed a “hyperspectral cube”. 

Two signature discriminating methods that are widely used in remote sensing, SAM and SID, were chosen to analyze the 
spectral characteristics of the rabbit retinal vasculature. These effective methods were originally used for endmember 
distinction for mineral or plants in satellite hyperspectral image data [26]. Therefore, the application of these algorithms to 
identify anatomic features within the retina, such as blood vessels is ideal. In addition, the RSDPB is an extension to SAM 
and SID and gives a probabilistic measure of similarity between any given set of signatures within the image. Experienced 
ophthalmologists selected six spectral reference points on each retinal image to represent either the blood vessel reference 
signatures or the background (nerve fiber layer) reference signatures, which are demonstrated in Figures 2 and 3. Each 
voxel on the hyperspectral data is then processed with SAM, SID and RSDPB using these six reference signatures. The 
resulting 3D plots in Figures 4 and 5 show a relative probabilistic distribution of the spectral signatures within the image 
based on values resulting from each calculation. 
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With these tables, it is easy to provide a quantitative measurement of the similarity between selected reference signatures. 
As indicated in Sections 1.1.1 and 1.1.2, a smaller value signifies that the two positions are more similar. As a result, the 
background spectra (positions 1 and 2 from Figure 3) are identified as spectrally similar in Table 2, while blood vessel 
spectra (positions 3-6 from Figures 2 and 3) can also be classified as containing similar substance in Tables 1 and 2. Hence, 
this justified the correctness of these algorithms while comparing them to the ground truth.  

Next, in order to obtain a probabilistic similarity measure between these locations we also calculated the RSDPB-SAM 
and RSDPB-SID as described in Section 1.1.3. The resulting values for these calculations are tabulated in Tables 3 and 4. 

Table 3. The RSDPB-SAM and RSDPB-SID probability based on points 1-6 selected from Figure 2 

RSDPB-SAM Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 

Map 1 1 0.852 0.779 0.790 0.748 0.831 

Map 2 0.689 1 0.829 0.836 0.763 0.883 

Map 3 0.513 0.820 1 0.907 0.903 0.857 

Map 4 0.545 0.831 0.909 1 0.858 0.857 

Map 5 0.556 0.801 0.922 0.885 1 0.836 

Map 6 0.624 0.876 0.855 0.853 0.792 1 

RSDPB-SID Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 

Map 1 1 0.894 0.764 0.787 0.694 0.862 

Map 2 0.565 1 0.868 0.880 0.749 0.938 

Map 3 0.230 0.895 1 0.972 0.970 0.934 

Map 4 0.272 0.900 0.971 1 0.929 0.928 

Map 5 0.304 0.860 0.979 0.953 1 0.904 

Map 6 0.416 0.936 0.914 0.911 0.822 1 

Table 4. The RSDPB-SAM and RSDPB-SID probability based on points 1-6 selected from Figure 3 
RSDPB-SAM Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 

Map 1 1 0.970 0.769 0.780 0.710 0.771 

Map 2 0.970 1 0.767 0.784 0.707 0.773 

Map 3 0.683 0.685 1 0.851 0.904 0.876 

Map 4 0.707 0.715 0.855 1 0.802 0.923 

Map 5 0.685 0.686 0.924 0.839 1 0.865 

Map 6 0.685 0.691 0.875 0.920 0.829 1 

RSDPB-SID Pos.1 Pos.2 Pos.3 Pos.4 Pos.5 Pos.6 

Map 1 1 0.996 0.777 0.798 0.648 0.781 

Map 2 0.996 1 0.774 0.804 0.641 0.784 

Map 3 0.593 0.598 1 0.909 0.963 0.937 

Map 4 0.632 0.652 0.909 1 0.832 0.974 

Map 5 0.599 0.602 0.977 0.895 1 0.926 

Map 6 0.596 0.613 0.937 0.974 0.881 1 

The results from Tables 3 and 4 further verifies that the background between positions 1 and 2 and the blood vessel 
positions, 3 to 6, are similarly very spectrally homogenous. To further demonstrate the selected reference signatures from 
Figures 2 and 3 and the corresponding spectral similarity within the whole image, the RSDPB-SAM and RSDPB-SID 
algorithm is further used to process the whole image. Similarity maps for the whole image (see Figures 4 and 5) are 
generated for the 6 different referencing points. These maps are plotted in pseudocolor to show the likelihood of 
substantial similarity. 
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Both RSDPB-SAM and RSDPB-SID can clearly discriminate the blood vessel from the background tissue where the 
background tissue has a high similarity (red indicates high probability) to the selected reference point. On the other hand, 
the blood vessel can be seen to have a lower similarity (blue indicates lower probability). These can be observed in both 
Figures 4 and 5 in the results for positions 1 and 2. It is worth noting that background reference point 2 in Figure 2 is 
selected to be a mix between background and blood vessel mixed pixel. As a result, both the blood vessel and background 
are not showing clear distinction as shown in position 2 in Figure 4. Moreover, the results for blood vessel reference points 
3-6 clearly indicates the trail of blood vessels in Figures 4 and 5. It is also worth noting that the reference point selection 
greatly affects the discriminate analysis. As shown in the results in Figures 4 and 5, the smaller blood vessels are more 
evident for reference point 4 while not showing for reference point 5. This might be due to the fact that the spectral 
signature for reference point 4 is more pure than the signature presented in reference point 5.   

In addition, the RSDPB-SID seems to provide a smoother probabilistic measurement to the referencing points. The 
resulting images also show small vessels that are hard to identify in the original image shown in Figures 2 and 3. In 
conclusion, these 3D maps clearly show very good correlation between the anatomic location of large vessels and the high 
spectral similarity within these vessel pixels. Similarly, there is very good agreement in the spectral classification of 
background tissue (in this case nerve fiber layer). 

4 Discussions 
We demonstrate that HCTIS can densely sample spectral data from a target scene and produce highly co-registered 
spectral, spatial, and temporal data from biological specimens in vivo in rabbits. Our data set shows that, by carefully 
selecting reference spectra in a spectral image, SAM and SID algorithms can identify anatomically similar tissue based 
only on the respective reflectance spectra. Furthermore, using a RSDPB index, historically used in satellite imagery for 
classifying similarly structured features, we reliably and reproducibly generate 3D spectral similarity maps of rabbit 
retinal features in vivo. When reference spectra are set to the voxel locations overlaying retinal vessels and nerve fiber 
tissue, these similarity maps have excellent agreement with the anatomical patterns of the retinal vessels and nerve fiber 
tissue, respectively. The resulting agreement between spectral and spatial features in these retinal tissues suggests that the 
HCTIS discriminatory algorithms are robust across different spectral profiles.  

Moreover, the similarity maps demonstrate that the same reference spectra, which reliably and reproducibly identify large 
retinal vessels (from which the reference spectra are derived), are also able to identify smaller vessels that are branches of 
the main vessels. This agreement suggests that the spectral discriminatory measures are largely accurate in classifying 
tissue based on reference spectra. The ability of these discriminatory measures to identify anatomical patterns-and 
potentially classify normal and pathologic tissues-implies that HCTIS has excellent potential for clinical use as a powerful, 
non-invasive diagnostic tool. 

In the medical field, hyperspectral imaging systems have begun to emerge as a powerful tool for disease diagnosis and 
image-guided surgery [27]. Diagnostically, hyperspectral imaging has demonstrated utility for identifying gastric cancer [28], 
and in dermatology, for evaluating skin lesions [29]. Furthermore, studies in swine show that hyperspectral imaging devices 
have the potential to become a real-time intraoperative tool for identifying anatomical structures in minimally 
non-invasive surgeries, such as laparoscopic cholecystectomy, reducing the need for radioactive contrast and aiding 
surgeons to avoid adverse and serious injury to non-target, vital tissues [30, 31]. 

The utility of hyperspectral imaging systems in measuring oxygen saturation remains an area of ongoing investigation. 
One study reports optimism about its usefulness for assessing foot perfusion in patients with critical limb ischemia [32]. 
Furthermore, neurosurgeons traditionally obtain postoperative PET scans to assess reperfusion following cerebrovascular 
reconstruction surgeries; hyperspectral imaging of the cerebral cortex may serve as a promising, real-time, intraoperative 
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tool for assessing metabolic changes and successful reperfusion [33]. Such real-time imaging could prove a game-changer 
in assessing the efficacy of surgery and guiding the surgeon intraoperatively. 

Hyperspectral systems are emerging with exciting new applications in ophthalmology [34]. The majority of these systems 
integrate with a fundus camera for visualizing the retina, while concurrently providing objective data. Whereas most 
hyperspectral systems have looked macroscopically at the retina, focusing on its more superficial layers, some 
investigators have developed a hyperspectral platform integrated with a microscope for analyzing the retina at the cellular 
level [35]. This technique, microscopic pushbroom hyperspectral imaging, which was first developed to examine retinal 
sections in diabetic and non-diabetic rats ex vivo, represents an exciting imaging modality with the potential to reveal 
spectral histopathology. 

Early on, investigators predicted the utility of hyperspectral imaging systems for detecting early changes in retinal disease 
when they observed their hyperspectral device’s ability to distinguish oxygenated and deoxygenated hemoglobin, and thus, 
discriminate retinal features such as retinal arteries, veins, and capillary beds [36]. Subsequent applications of hyperspectral 
systems in ophthalmology employed are able to map changes in oxygen saturation of retinal vascular structures, which is 
important for increasing our understanding of underlying ocular, vascular pathology, from diabetic retinopathy, 
arteriovenous occlusion, and glaucoma. Early studies in primates showed that a hyperspectral device reliably measured 
predicted changes in oxygen saturation when breathing experiments and changes to intraocular pressure were induced, 
suggesting that an oxygen saturation map of the retina can be built [37]. 

While this system and those used by others [3, 4] show clinical promise, these earlier platforms are limited by long 
acquisition times, often leading to motion artifact and pixel misregistration. Nevertheless, as detailed in Section 1, the 
introduction of snapshot hyperspectral platforms like the HCTIS enabled significantly faster data acquisition times [14]. 
Most recently, hyperspectral studies in vivo in patients demonstrated significant variations in the retinal vascular oxygen 
content among normal subjects and patients with diabetic retinopathy; the study also demonstrated for the first time that 
HCTIS is a clinically feasible method for assessing intravascular oxygen content in humans [38]. Previously, the HCTIS 
oximetry method had been validated in animal models [14, 39, 40]. Snapshot hyperspectral imaging as a tool for evaluating 
macular pigment and understanding age-related macular degeneration (AMD) is already underway [41, 42]. Already, its 
ability to noninvasively evaluate for macular pigment in vivo, appears feasible for macular pigment mapping and AMD 
evaluation [43].  

In conclusion, we show proof-of-principal application of a HCTIS that can densely sample spectral data from a 
biologically relevant target scene and maintain excellent spatial and temporal coregistration. This hyperspectral data set 
allows the application of well-tested hyperspectral discriminatory algorithms (SAM, SID and RSDPB) in normal tissue in 
vivo.  The discriminatory analysis shows robust spectral similarity profiles that agree with known anatomical patterns. The 
ease and safety of the HCTIS imaging modality and the robust discriminatory algorithms may be a clinically useful tool for 
non-invasive analysis of normal and pathologic tissue in the future. 

Future challenges include determining the optimal reference spectra and in creating a library of reference spectra for 
important biological markers. Already, we have begun to identify spectral signatures for oxygenated and deoxygenated 
hemoglobin and macular pigment components like lutein and zeaxanthin [42]. Oncologic biomarkers may provide the next 
logical progression for this exciting technology. With the establishment of optimal reference spectra and improvement in 
acquisition and computing time, there will be countless ocular and medical diseases that will benefit from the objective 
data that this imaging modality provides. 
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