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Abstract 
Objectives: Regardless of the excellent adhesive and biological properties of glass ionomer cements (GICs), their poor 
mechanical properties and abrasion resistance limit their application to non-load bearing areas. This study aimed to 
investigate the effect of flax fibres incorporation on surface and mechanical properties of GIC filling materials.  

Methods: Short chopped flax fibres were randomly incorporated into GIC at 0, 0.5, 1, 2.5, 5 and 25 wt%. Surface hardness, 
distribution of different phases, stiffness map, phase separation and uniformity of the material were investigated.  

Results: Addition of flax fibres produced no significant change in Vicker hardness number of GIC. Qualitative imaging 
using atomic force microscopy showed the presence of a single phase in GIC, while biphasic structure was observed for 
flax fibres modified GICs (FFMGICs). For all tested formulations, the flax fibres, however, were uniformly distributed 
and well integrated within the GIC matrix without any visible interfacial separation. Incorporation of flax fibres was 
associated with a significant increase in surface roughness and stiffness. The roughness values obtained for all tested 
formulations, however, are far below the threshold values for bacterial adhesion and plaque accumulation. 

Conclusions: Flax fibres modified GICs could be potentially used in high stress bearing areas.  
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1 Introduction 
Due to its adhesion to tooth structures, biocompatibility and anticariogenic action, the conventional glass ionomer cement 

(GIC) has been widely used as a filling material. One of its common limitations, however, is its low mechanical properties 

and its susceptibility to abrasion and scratching by hard tooth brushing.  

Several modifications have been carried out to improve the mechanical strength and degradation resistance of GIC. 

Addition of silver-amalgam alloy was effective in enhancing the strength but impaired the aesthetic quality of GIC. A 
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sol-gel niobium modified GIC showed higher mechanical properties and reduced degradation than the conventional  

GIC [1-3], but its biocompatibility with the dentin-pulp complex, however, has not been tested [4].  

To eliminate any concern about the biocompatibility issue, natural products found great interest for biomedical 

applications. Flax fibres, as an example of biologically produced products, are commonly used for both industrial [5, 6] and 

biomedical field [7, 8]. Due to their antibacterial action, flax fibres were used as wound dressing [7]. For dental applications, 

flax fibres were effective in improving the compressive strength while reducing the degradation of zinc oxide eugenol 

cement [9].  

Surface topography (e.g., roughness & free energy) of intraoral hard surfaces and restorations has a great influence on the 

initial adhesion and retention of microorganisms, Streptococcus Mutans in particular [10, 11]. Accumulation of dental plaque 

and consequent risk of caries and periondontal inflammation can easily occur with rough surfaces [12-15]. Proper finishing 

and polishing is therefore an essential clinical practice for aesthetic and durable restorations [16].  

Surface roughness can be measured qualitatively by scanning electron microscopy [17, 18] or quantitatively by profile- 

metry [19] and light sectioning microscopy [20]. Recently, the atomic force microscopy (AFM) showed high capability to 

reveal more detailed information of surface topography [21] of resin composites after various treatments e.g., mechanical 

tooth brushing [22],  different polishing protocols [23] or in-office bleaching [24]. AFM produces a 3-D imaging of the surface 

at nanoscale level with no need for any sample preparation. It can also produce a high resolution quantitative map of the 

mechanical properties [25] and stiffness of the material [26]. 

In this study, the conventional GIC restorative material was modified with randomly distributed short chopped flax fibres 

that were incorporated into the GIC powder at 0, 0.5, 1, 2.5, 5 and 25 wt%. These fibres were incorporated in an attempt to 

improve the mechanical properties while maintaining the good biocompatibility of GIC. The aim of this study was 

therefore to test the hardness, as a surface mechanical property, surface roughness and mechanical properties at nano-scale 

level of flax fibres modified GICs. The null hypothesis was that “addition of flax fibres has no effect on surface properties 

(roughness & hardness) and modulus of glass ionomer filling materials”. 

2 Materials and methods 

2.1 Samples preparation 
Short flax fibres (675 ± 255 μm length and 10 μm diameters) and glass ionomer filling materials (KetacTM Fil Plus, 3 M 

ESPE, Germany, shade 3.5 A) were used for this study. Fibres were included at 0, 0.5, 1, 2.5, 5 and 25 wt% and samples 

were coded as GIC, 0.5 FFMGIC, 1 FFMGIC, 2.5 FFMGIC, 5 FFMGIC and 25 FFMGIC. The powder/liquid (P/L) ratio 

was fixed at 3:1. The required amount of powder and liquid was weighted using an electronic balance (Shimadzu 

Corporation, Tokyo, Japan). For proper distribution of flax fibres, they were properly mixed with the powder before the 

addition of liquid. The cement was mixed according to the manufacturer’s instruction. Disc shaped specimens of 8 mm 

diameter and 3 mm thickness were prepared from each composition using a transparent rubber mould. The rubber mould 

was set on the top of a glass slab and a celluloid strip. The material was inserted into the mould with a slight excess of 

material used to fill the mould. Another celluloid strip was then placed on the top of the filled mould; the material surface 

was pressed flat with another glass slab. The glass slab was held firmly in place for few minutes to avoid air bubbles 

incorporation and to obtain a flat and smooth surface. After 15 minutes, the celluloid strips and glass slabs were removed 

and then the excess material. Each disc was then smoothed from both sides with silicon carbide papers of grit size #240 

then followed by #600; the surfaces of each disc, however, were left untouched. The samples were then kept in a plastic 

bag until use. 
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Generally, the Ra value varies with the filler content and scan size-Table 1. The number/density/sizes of asperities on the 
sample surface decreased with increasing the filler content. 

4 Discussion 
Currently, researches aim at developing materials with suitable characteristics (e.g., smoothness, hardness and mechanical 
properties) to meet both dentist and patient’s expectations. In this study, flax fibres were incorporated into glass ionomer 
restorative materials in order to develop materials with higher stiffness while maintaining surface texture and hardness of 
GIC. This study therefore aimed to investigate the effect of flax fibres, as natural materials, on surface hardness, roughness 
and micromechanical stiffness of GIC filling materials.  

4.1 Microhardness  
Surface hardness is an important property used to measure the setting reaction [27] and the interaction of materials with the 
surrounding environment [28]. Hardness is highly correlated with compressive, flexure and wear properties [29]. In the 
present study, incorporation of flax fibres produced no significant change in the hardness number of GIC; this may 
indicate that the flax fibres did not interfere with the setting reaction of GIC. The microhardness value obtained for 
KetacTM Fil Plus is higher than that recorded in literature [30]; this could be due to the variation of testing conditions (e.g., 
load and time of its application), powder/liquid ratio, and preparation method. According to the results of the hardness test, 
there was no enough evidence to reject the null hypothesis.  

4.2 Surface topography and mechanical properties 
Surface roughness determines the clinical quality and performance of the restorative materials. For aesthetic restorative 
materials, surface smoothness is highly important for better aesthetic. Rough surface, however, encourages plaque 
accumulation and hence gingival inflammation and discoloration of aesthetic restorations would be expected. Surface 
roughness was measured as “the mean value of the heights and depths of the roughness profile” and recorded as “Ra” 
value [31]. In the present study, all sample surfaces were prepared against celluloid strips that formed the smoothest 
possible surface for restorative materials in clinical applications. Accordingly, there was no polishing carried out after 
sample preparation in order to simulate the clinical situation [32]. The increase in surface roughness, particularly in large 
scan size, with 1 FFMGIC could be associated with the appearance of asperities on the surface. These asperities could be 
due to the presence of fibres near or at the surface. Further increase in surface roughness with 5 FFMGIC, however, could 
not be mainly attributed to the presence of asperities as in 1 FFMGIC due to the lower number/density of asperities on the 
surface of 5 FFMGIC samples than those seen with GIC and 1 FFMGIC samples. Furthermore, the size of the asperities 
seen with 5 FFMGIC was smaller than those on GIC and 1 FFMGIC samples. The increase in surface roughness of 5 
FFMGIC could be due to the high density of the fibres and the formation of more homogenous bi - phasic material with a 
uniform distribution of the fibres within the structure [33]. The bi - phasic structure of FFMGIC was confirmed by skewed 
distribution of stiffness and topography. This skewing was towards low (in case of 1 FFMGIC) or high stiffness (in case of 
5 FFMGIC). For samples with 25 wt% fibres, the surface roughness values for all analyzed sizes decreased when 
compared with other formulations. This could be explained by the large number/density of uniformly distributed smooth 
fibres in the structure. For GIC, however, the uniform distribution of the stiffness and surface morphology suggested a 
single phase material. Small areas of low stiffness were also seen for GIC; these areas could be pinholes, scratches, 
protrusions and unspecific interactions of the silicon tip with these features. Regardless of the bi - phasic nature of flax 
fibres modified glass ionomer restorative materials, the fibres were uniformly distributed and well integrated within the 
glass matrix without any visible interfacial separation. This could be indicated by the increase in stiffness with the addition 
of flax fibres, up to 5 wt% in particular. 

Normally, bacteria adheres and colonizes to rough surfaces. The threshold roughness value “Ra” is 0.2 μm; any roughness 

below this limit has no major effect on the supra-and sub-gingival plaque accumulation. Any roughness value above  



http://jbei.sciedupress.com                                                            Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1 

                                                                                          ISSN 2377-9381   E-ISSN 2377-939X 90

0.2 µm, however, significantly increased bacterial adhesion and plaque accumulation [34]. In this study, the measured 
roughness values are lower than the threshold value reported in literatures.  

Interestingly, the increase in stiffness was observed with the addition of up to 5wt% of flax fibres; a drop in stiffness, 
however, was observed for 25 wt%. Furthermore, it was observed that the stiffness distribution was directly related to 
fibres’ content. A gradual increase of the areas with low stiffness, which were associated with the flax fibres, was observed. 
Importantly, for all samples, the stiffness distribution, thus filler, was uniform. The most uniform distribution of the 
stiffness was observed for the samples with 25 wt% flax. AMFM investigations on small scan sizes confirmed that the 
stiffness distribution was very uniform. The increase in the stiffness (bright regions) was observed only around asperities; 
this phenomenon could be explained by either a decrease in the contact area between the tip and the surface, or ‘tight’ 
junction at the interfaces between material components reducing stress accumulation. The latter situation is more likely 
and corresponds well with the structural analysis of the material [35]. According to the results of surface roughness and 
mechanical properties, there was an enough evidence to reject the null hypothesis.  

The effect of flax fibres on setting characteristic (kinetic and time), mechanical (compression and flexural) properties, 
radiopacity as well as biocompatibility of GIC restorative materials will be considered in the future work. Another 
direction for the future work will be the surface modification of flax fibres for further improvement of materials’ stiffness.  

5 Conclusion 
1) Addition of flax fibres produced no significant changes in surface microhardness of GIC. 

2) Qualitative imaging using AMFM showed the presence of a single phase for GIC, while biphasic structure was 
observed for FFMGICs. Regardless of the bi-phasic nature observed for flax fibres modified formulations, the 
flax fibres were uniformly distributed and well integrated within the glass ionomer matrix without any visible 
interfacial separation. 

3) Addition of flax fibres up to 5 wt% produced a significant increase in surface roughness. This was related to the 
increased content of fibres protruding on the surface as well as the heterogeneous, biphasic characteristics of flax 
fibres modified glass ionomer materials. 

4) Importantly, the incorporation of flax fibres up to 5wt% significantly increased stiffness. The increase of the filler 
content to 25 wt%, however, resulted in drop of the maximum stiffness. 

5) The number/density/sizes of asperities on the sample surface decreased with increasing the filler content. 
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