http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

ORIGINAL ARTICLES

Lessons learned from the development of an
affordable fall detection system for mHealth

Miguel Angel Estudillo Valderrama®, Laura M Roa Romero?, Luis Javier Reina Tosina®?, Gerardo
Barbarov Rostan?’, David Naranjo Hernandez?

1. Biomedical Engineering Group, University of Seville, CIBER-BBN, Seville, Spain. 2. Department of Signal Theory and
Communications, University of Seville, Seville, Spain.

Correspondence: Miguel Angel Estudillo Valderrama. Address: Biomedical Engineering Group, Escuela Técnica Superior
de Ingenieria, University of Seville, Seville 41092, Spain. Email: mestudillo@us.es

Received: June 29, 2015 Accepted: August 2, 2015 Online Published: August 12, 2015
DOI: 10.5430/jbei.v1n1p59 URL: http://dx.doi.org/10.5430/jbei.vin1p59
Abstract

This paper discusses some relevant methodological and implementation experiences acquired during the design and
development of an embedded Fall Detection System (FDS), which can be of help in order to develop efficient and safe
biomedical software for mobile Health (mHealth). For this purpose, an analysis of concepts like portability and iterative
design, as well as some concerns about risks and safety involved, is provided in order to address some of the current
challenges in embedded software, regarding the state-of-art of software development standards and mHealth technologies.
This analysis is later evaluated for a custom pre-industrial prototype of the FDS, as an example of the feasibility of the
approach followed. The results obtained show that a convenient methodological process can help to optimize available
resources so as to provide affordable mHealth solutions.

Key words
Embedded software, mHealth, Methodologies, Sustainability, Real-time

1 Introduction

The massive use of connected devices in everyday-settings, empowered by upcoming paradigms as the Internet of Things
(10T), is a reality nowadays ™ and will become a key factor in the future of the digital society, as many predictions
claim 3. This emerging ecosystem is also valid in the healthcare domain, where it is highlighted the increasing
importance of unobtrusive sensing technologies for the monitoring of physiological and health conditions through Body
Sensor Networks (BSN) and Medical Devices (MDs) . At this point, it is necessary the participation of low-cost,
low-power, small-sized, robust and portable devices, with processing and sending user-monitored information capabi-
lities ©!. Thus, it is required a comprehensive envision of biomedical embedded software that addresses engineering
challenges like iterative development, proper verification, and management of the safety and risks associated.

Software portability is a good sample, as it encompasses many of the requirements described since the very early stages of
Computer Science. A precise definition of the concept can be found in the standard 1ISO SQUARE 25010 !, where it is
defined as the “ease with which a system or component can be transferred in an efficient and effective way from one
hardware, software or operation environment to another” (sic). This main feature is in turn divided in the following
sub-characteristics: adaptability, capacity to be installed and capacity to be replaced. Ref. [" remarks that portability is the

Published by Sciedu Press 59

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

key issue for cost reduction and sustainable development, which is a vital requirement in any engineering area . Among
these areas, the upcoming paradigms of mHealth ©! have shown the importance of software portability. A common
approach described in Ref. ! addresses the rapidly development of Smartphone and in general the touch-pad market,
where it must be highlighted the explosion of the Android mobile operating system. Although, for certain applications, this
approach may demand too much resources that may not be needed ™Y. In addition, current context of economic and
environmental awareness demands that the development of technologies walks in hand with their re-use. Therefore, there
is an inevitable tradeoff to be tackled between pursuing global embedded software portability, and dealing with
sustainable requirements, as it may be the case for the multiple mHealth applications 2. However, it must be noticed that
software portability in healthcare, as well as in other industrial contexts with strict privacy rules, must address issues like
certification that difficult its exportation into different platforms without running a separated certification project.

Other important issues to tackle when developing MD software, either portable or not, are safety and risks associated
whilst assuring the best Quality of Service (QoS) of communications. In this context, there are different standards and
procedures that define a general iterative framework to guide the developers. In a first place, ISO 14971 [establishes the
requirements for risk management in order to determine the safety of a MD by the manufacturer during the product life
cycle. In a second place, 1SO 13485 4 includes the requirements for a comprehensive management system to design and
manufacture MDs. Finally, due to the lack of specific standards for MDs, the IEC 62304 ™! initiative emerges as an
integration effort so as to define requirements for the whole life cycle of medical embedded software: from the first stages
of design to the final tests and verifications. Besides, IEC 62304 defines specific requirements to identify factors that may
contribute to additional risks for the user derived from MD software, like the ones that may appear when porting to
different platforms.

Nevertheless, despite the novelty of these efforts and to the best of authors’ knowledge, there is a lack of studies in the
scientific literature or the industry on how to take advantage of current procedures so as to address affordable mHealth
solutions. In the meantime, vendors and manufacturers % are progressively paving the way to the optimization of
software development through the adoption of these standards and the use of iterative processes and methodologies,
although there is still room for improvement, for instance in terms of usability for software developers ™. In fact,
embedded mHealth systems are characterized by very strict operating conditions, which refer to runtimes that allow
real-time responses in order to provide an advanced monitoring. Besides, the limited resources in terms of memory and
processing of embedded systems are added, which require the optimization of applications through real-time Embedded
Operating Systems (EOS) [". Hence, it is essential the knowledge for co-development at hardware (HW) and software
(SW) levels. At this point, C programming language arises has a reference tool for the co-development, like in
Ref. 18 where code is compliant with ANSI C standard, and open-source libraries are used to minimize portability
issues.

Thus, the main contribution of this paper is to share with the scientific community the lessons learned from the
development of a specific mHealth system able to detect human falls, called FDS, which involves the challenges
described. This paper is not intended to be a comprehensive guide for embedded software developers, but instead it details
some important and useful insights about the methodological issues that may arise when developing affordable embedded
biomedical software, regarding current state-of-art of mHealth standards and technologies. The manuscript is organized as
follows: Section Il defines the methodological approach adopted, as well as the methods and materials employed; Section
111 analyzes the main results obtained for the embedded software performance, and its development viability considering
sustainable technologies; Finally, Section 1V provides some discussion and concluding remarks.

2 Methods and materials

2.1 Fall detection system
The Fall Detection System (FDS) is defined by a BSN that consists of a single intelligent accelerometer unit (IAU), among
other smart sensors, which is placed in the lumbar region of the monitored subject, and a personal server (PSE) ™. The

60 ISSN 2377-9381 E-ISSN 2377-939X

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

FDS follows a distributed processing paradigm in real-time where the IAU performs a rough signal pre-processing,
whereas the PSE is responsible for conducting further analysis to determine events of interest: the occurrence of falls 2.
Besides, the PSE is composed of a set of embedded software modules responsible for various functions, such as the
internal operation of the system, the bi-directional communication with smart sensors (up-link) and service providers
(down-link), or the standardization of the medical information generated in the point of care (PoC) for its inclusion in the
healthcare communications infrastructure.

The core of the pre-industrial prototype of the PSE is supported by a floating point Digital Signal Processor (DSP) from
Texas Instruments (T1) TMS320C6727 family. The prototype (see Figure 1) also incorporates a 1IMB flash memory in
order to store code for both signal processing and management of internal data. The HW of the PSE is completed with the
communications module and the user interface, consisting of both visual and auditory elements that let the interaction with
the server be eased. A deeper hardware analysis of the prototype can be found in Ref. /. By the other hand, the up-front
requirements for the product development of the PSE have been defined through network QoS metrics, related to a safe
data transfer rate and a minimum alarm time delay response, which were assessed during system test and verification in
several settings (see Section 3). In particular, and for the sake of the evaluation of the FDS, it has been established ! a
maximum response time of 1 second for the FDS and two kinds of setting scenarios (indoor and outdoor) for the test
experiments. Thus, the paper focuses on how the EOS within the PSE addresses these requirements for an application
where time response is critical, as human fall detection. Besides the EOS, due to the multimodal design of the PSE must be
designed to be able to manage different smart sensors in real time, and therefore it has to host a set of algorithms for
different types of processing ??!. For these reasons, embedded processing modules of the PSE have strict requirements in
terms of memory allocation and time response that give rise to important considerations in the software development
process.

Figure 1. Preindustrial prototype of the PSE. The
central part is mainly occupied by the DSP, while
the lower part is reserved for the Zigbee (left) and
GSM/GPRS (right) communication modules.

2.2 Software development process

The guidance for the process of software development of the PSE has been to follow the EN/IEG 62304 standard ™!,
which is the de-facto benchmark for management of the medical software development lifecycle. This way, a design
compliant with IEG 62304 ensures that quality software is produced by means of a defined and controlled process of
software development. Besides, the standard defines particular processes to cover other fundamental areas: maintenance,
software configuration, problem resolution and risk management ™31, The latter is especially important to ensure patient
safety, and contains a set of requirements based on the safety class of the software that is being developed. In the first
place, risks can be addressed by a divide-and-conquer strategy, in a scenario where different software items are run on

Published by Sciedu Press 61

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

different processors, each of which having a different safety classification. In the second place, the standard proposes the
need of a quality management system ! that demonstrate the capability of SW to meet user and legal requirements.

CODE

CONVERSION RSV
FROMHIGHTO , independent
INTERMEDIATE » code
LEVEL ¥« Optimization
» Manually = Verification

+ Automatically

{1 \ foptimized | N f - ‘
e) \ code ' AN] ! uP

Code

+ Algorithm implementation 2 * Machine code generation
adaptation
» Application development to the * WP load
« Application verification embedded » Embedded application verification
system
Mathematical Computing IDE Embedded Applications IDE

Figure 2. Functional diagram of the development procedure for EOS

On the other hand, given the strong correlation between the SW/HW resources available in the PSE, it is advisable to adopt
an iterative implementation approach, rather than the traditional waterfall cycle, which is very efficient for software
debugging and reuse. This iterative approach has been chosen as the best option to fulfill all the requirements of the PSE
optimally **1, and has been mainly addressed by agile methodologies !, in particular Scrum 4. It consists in developing
functional software that is progressively debugged and optimized through a set of incremental changes in short work
cycles so as to meet the user design requirements and facilitate future redesigns. This way, the approach followed was to
consider the risks posed by the MD as a whole, before the SW/HW division has been decided. Hardware risk analysis can
then run alongside software risk analysis to define the required safety systems for the device. In order to detail the
approach followed for the SW development of the PSE, the authors will mainly focus on one of the most important issues
of an embedded system: the digital signal processing. This way, the authors considered two main alternatives to develop
the real-time signal processing algorithms to be hosted on an embedded system: Firstly, they can be directly implemented
within the CPU (DSP) of the system using low-level language (machine or assembler code), which is ceasing to be a
common practice. This is explained by the evolution of development tools able to generate machine code from the
compilation of high-level source code, which is normally embedded C language (see right bottom of Figure 2). Thus, the
second alternative is to use integrated development environments (IDES) that ease a two-layer software development:
high-level (algorithm implementation in a controlled environment through a mathematical IDE) and low-level
(on-platform algorithm verification through an embedded IDE). This alternative allows the best optimization of the
algorithms developed, although the complexity of machine code and the specificity of proprietary C libraries increases the
learning curve due to its heavily dependence of the particular platform.

Table 1. Main Software modules of the PSE

Module Peripheral DSP Interface Safety Class
- Zigbee SPI B (C)
Communications GSM/GPRS GPIO & I2C
LCD 12C
User Interface Audio SPI & 12C A
Keypad GPIO
DSP and Power Mgt. Flash EMIF B(©)
Battery 12C

According to IEC/EN 62304, Safety Class A means “No injury or damage to health is possible”; Safety Class B means
“Non serious injury is possible”; Safety Class C means “Death or serious injury is possible”.
62 ISSN 2377-9381 E-ISSN 2377-939X

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

Nevertheless, when building the embedded application within the particular constraints of the embedded system, it is often
useful to take a step back and consider the conversion to an intermediate system-independent programming language (see
Figure 2 at the top). Developing an intermediate code is a powerful tool for multi-platform applications where the same
software might be hosted in several devices. This way, the portability of the algorithmic software is empowered ™7, For all
these reasons, the design of the PSE has followed the approach depicted in Figure 2.

3 Results

This section has four parts. The first two provide a general perspective of the PSE SW in order to study safety
considerations. Later on, a deeper analysis of the approach followed for the development of the fall detection algorithm is
provided, regarding current technologies. Finally, the approach proposed is evaluated from two perspectives: 1) real-time
performance; 2) test-bed verification.

3.1 Embedded operating system of the PSE

In order to develop the EOS of the PSE, the main features provided by the DSP/BIOS tool ! were used. In particular, a
concurrent programming of the three main modules has been done through software tasks (TSK). Besides, a set of
hardware interrupt routines (HWI) have been established to attend interruptions like those coming from user interface.
Software functions (SWI) have also been used, which are triggered to release the load of HWI routines due to their smaller
deadline execution. Furthermore, periodic functions (PRD) have been employed to implement the periodic modules
needed. The three first columns of Table 1 lists the inter-device standards applied, either using 1/0 lines emulated through
general purpose pins (GPIO) or by means of specific peripherals embedded in the DSP, such as the Inter-Integrated Circuit
(12C), the Serial Peripheral Interface (SPI) or the External Memory Interface (EMIF) ports. The last column refers to the
safety classes assigned to the different software modules, which is discussed later on.

£ " HARDWARE

Figure 3 shows a flow diagram of the EOS of the PSE when
dealing with fall events: A TSK thread devoted to communi-

C omone D+ irEsHOLDS cations listens to the SPI port through a HWI routine that is
N - o activated when the arrival of any sensor data from the 1AU
occurs. Then, the DSP executes the appropriate tasks to
process the signal and if a fall event is detected, the PSE sends
an alert to the service provider through the communications

INITIALIZATION

//.\\\\
7 user N UPDATE

e module. This alarm event is also triggered if the user presses a

\ dedicated button of the PSE. When none of the threads is
/ﬁ'::\ e running or the processing thread is finished, the energy saving
N - module is executed, resulting in a decrease of the switching
frequency of the state logic CMOS circuitry of the DSP and an

KEYBOARDFLAGS
STATE UPDATE

idle state of the CPU, waiting for an interruption to get it out of

\"“f\/\ = that state 1,

f———
/ DISPLAYEVENT
S, AUDIOPLAY)

3.2 Safety assessment and

DELAY USER
management

ey WD \ The IEC/EN 62304 standard defines a safe system if it does

ikt e 4—(G:g‘:\.;.. / not create a hazard that could result in an injury for the users.

N According to this definition, the fall detection system as a

Figure 3. Flow diagram of the EOS of the PSE. Shaded whole may be considered as Class C (see caption of Table 1) if
blocks represent the main software modules for the fall the time response or its absence could indirectly worsen the
detection consequences originated by a fall, in the worst case scenario.

Published by Sciedu Press 63

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

However, the divide-and-conquer strategy followed for the safety management in the FDS has been the software
classification in two categories of safety classes, as stated in the standard.

C classes are tied with their ability to detect falls (detection)

Matlab . m .Real 'I'lme_ | ¢ . .]
|\ coe .W°:'<S“°". code and the alert of their occurrence (communication), whereas
[} . R
. . vt . A A classes are dedicated to other low risk tasks. Nevertheless,
.m Embedded i . .
code % Matlab | | ohoX | compier the standard allows the reclassification of C to B-class (see
Matlab C Setting right column in Table 1 between parentheses), if and only if
_ _ » _— the user is provided with additional hardware resources,
bi
fle |genAISpl ereatable— Composer = which are defined as hardware risk control in 62304. To that
Code Composer Studio aim, the user of the FDS has always the option to press a

button of the PSE in case the fall detection fails. Moreover,
class-B software modules have been implemented in
different microcontrollers and isolated memory allocations
in order to maximize system safety and minimize risks. In particular, the communication module is executed both in the
System-on-Chip (SoC) embedded in the Zigbee and the GSM/GPRS peripherals of the PSE. In the third place, the CPU
and Power Management Module are controlled by the DSP, where the class-B algorithm for fall detection is executed and
stored. All these technologies have been chosen because of their proven robustness and QoS. Despite this, if data
connection is lost or in case of leakage of battery, which are critical issues in any mHealth system, it is followed the 1SO
IEC/CD 60601-1-8 recommendations 7). Thus, it warns the user that the PSE must be connected to an appropriate power
source, and/or alerts that the corresponding fall alarm will be sent as soon the connection is recovered. This standard
specifies the requirements for systems and alarm signals within a “distributed alarm system” for patient care, and
determines the status of an “Alarm System”, distinguishing between clinical (fall event) and technical alarms (power
failure). The standard also provides the guidance for the application of these alarm systems, through the definition of:
alarm categories, priorities, urgency, and control states.

Figure 4. Proposed design procedure for the FDS

3.3 Fall detection algorithm

The algorithm used by the FDS has five set of functions, which perform the basic tasks of the algorithm ®!: signal
preprocessing, calculation of key parameters and decision about the event occurred. The processing techniques employed
have been simplified so as not to overload the processing capacity of the PSE. Besides, the algorithm has been designed to
be remotely personalized through various threshold optimization techniques so as to minimize the number of false
positives. For this purpose, it is employed a distributed processing architecture % that explicitly integrates capabilities for
its continuous adaptation to the medium, the context, and the user. In addition, the development and initial evaluation of
algorithm performance is significantly eased in a controlled environment like a mathematic IDE, with which preliminary
bugs are quickly debugged and corrected. This way, taking into account the methodology described in Section Il and the
HW of the PSE, the procedure consists of the following steps (see Figure 4):

* Design and development using a mathematic IDE (e.g., Matlab™).

e Adaptation of Matlab code to Embedded Matlab. Optionally, generation of intermediate code (e.g., C-MEX
functions) for a first evaluation of the algorithm in Matlab.

e Conversion to C-code using Real-Time Workshop (RTW).
e Debugging, optimization and verification of the generated C-code with a generic compiler.
e Adaptation of the C-code through an embedded IDE (e.g., Code Composer Studio (CCS) from Texas

Instruments.

The authors of the paper have chosen Matlab as Mathematical IDE due to its worldwide adoption and comprehensive set
of toolboxes. Nevertheless there are other emerging options available, based on Python language, which show great

64 ISSN 2377-9381 E-ISSN 2377-939X

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

performance among other interesting features that make it a great choice for embedded software developers %, In any
case, the methodologies proposed are independent of the solution adopted and can be easily adapted to the particularities
of the IDE selected. In the particular case of Matlab, they led to a five-step approach where it is tested each task alone, in a
modular basis and in conjunction, as stated in the 62304 standard. Its correct operation was firstly verified in Matlab and
the obtained results were taken as a reference for the rest of the validation procedure. Anyway, the verification is implicit
in every one of these stages, since it follows agile methodologies. This way, the results obtained in the successive stages
are compared with those validated by simulation using Matlab environment. Besides, agile approach has speeded up the
development by cyclically evaluating the results compared to the set of requirements and QoS metrics defined in the
methodology section. This iterative process is easily performed considering current state-of-art of IDE, which allows a
rapid development by minimizing the burden for the embedded software developer. This process has allowed the
optimization of the co-development of the hardware and software of the PSE.

c } | ‘ h ‘ T ‘ tof ‘ In Parallel, each major functio.n. ha.s been convej\rted independen.tly.
cOmer . o ‘ This way, RTW creates a specific file that contains all C header files
Ensambler v L and facilitates the debugging of each function in a platform-
.obj » Linker <— independent C language build environment. Therefore, portable

o v _ C-code software has been obtained, so that the application can be
.out executed in various embedded systems from lighter platforms. The

final step is dedicated to algorithm adaptation to the particular
characteristics of the PSE through the CCS IDE. Thus, the memory
map and debugging tasks have been defined using the configuration
file generated by DSP/BIOS (.tfc/.cmd in Figure 5) in order to optimize the real-time performance of the software module.
Specifically, the additional configuration file (.cmd) defines memory sections, one of which has been used to place the
application code. Finally, CCS allowed the compilation of source code, along with the header files and settings to generate
the executable file.

Figure 5. Generation of the executable file

3.4 Evaluation

The evaluation of the PSE has been performed from two perspectives. First, a real-time validation that evaluates FDS
performance compared to other solutions available. Second, a test-bed validation that analyzes other technical issues
related to wireless MDs.

3.4.1 Real-time performance

A set of experimental data captured by the IAU has been used in order to validate the real-time processing algorithm. The
aim was to check that the algorithm embedded in the PSE, as well as in other platforms, maintains the sensitivity (100%)
and specificity (96.15%) of the original algorithm previously simulated in the Mathematical IDE, in order to avoid any
new error introduced in the process of software optimization. This way, and in order to assess the goodness and correct
performance of the embedded software to different platforms, the code of the fall detection algorithm has been compiled
and executed through open-source IDEs for C programming on several CPUs from the following platforms: an average
notebook, an Android-based Smart TV-BOX, and an open-source hardware embedded board. The comparison of the main
outcomes achieved is summarized in Table 2. In the first place, the main conclusion obtained was that the methodological
development approach permitted to successfully compile and execute the embedded FDS in several platforms with
different features. Besides, the needed programmer person-hours in order to fulfill these tasks were 2 hours in average for
every platform, once evaluated in Matlab. This amount of time, and consequently the associated personnel costs of
development, would have been significantly higher if the algorithm had been developed from scratch for each platform,
thus confirming the viability of the methodological techniques used and encouraging developers to follow this approach in
other mHealth projects.

Published by Sciedu Press 65

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

Table 2. Comparative analysis of features of the fall detection algorithm embedded in different platforms

Platform Average NoteBook Smart TV BOX Embedded Board PSE

SoC/Core Intel Core2 Duo/Dell ALLWINER A107/ARM PIC32MX440F256 / TMS320 C6727 /
Precision M4400 CORTEX A8 MIPS M4k C6000

oS Windows XP Android 4.1 Custom DSP/BIOS

Clock 2.53GHz 1.2GHz 80MHz 300MHz

Compiler Bloodshed Dev-C++ JNI-NDK GCC 4.6 GCC4.3 CCS4

Deadline 31 ms 10 ms 11.2s 92.85 ms

Memory 69 Kb 13,1 KB 126,12 KB 67KB

BOM $443-$762 $65* $7** $45

*BOM, which refers to bill of materials, does not include a graphical user interface; ** BOM includes only the SoC and the clock

Then, the real-time performance of the embedded processing module has been estimated using the Real-Time Analysis
tools of CCS. For this purpose, the event log of CCS was used to assess the expected results from the input data. As a
result, the software modules required for fall detection require 27854944 CPU cycles to complete its execution, which
corresponds to 92.85 ms at the DSP clock frequency (300 MHz), as shown in Table 2. The difference in the time deadline
of the algorithm that is executed on a Notebook compared with the PSE is mainly due to the more limited processing and
RAM memory resources of the embedded system. Nevertheless, the development process followed has allowed ensuring
that the deadline of the fall detection algorithm, and in particular for the PSE, is within the a-priori set goals, which
corresponds to a soft real-time embedded system. The exception is the results obtained for the Embedded Board, due to a
lower frequency clock from a not-floating point processor (P1C32). Finally, the 67 KB binary file obtained represents an
occupancy rate of 6.64% of a standard 1MB flash memory, like the PSE memory, thus having a 93.36% available for other
processing modules hosted in the PSE.

3.4.2 Test-bed evaluation

Once the correct performance of the algorithm was successfully evaluated in the previous sub-section, the test-bed
validation was performed through several sets of experiments. These were developed on thin mats under control in our lab
facilities (indoor) and the surrounding area (outdoors) by 31 young and healthy males and females with ages of 28+4 years,
weights of 72+14 kg, and heights of 17448 cm. The aim of these experiments was, in a first place, to confirm the feasibility
of alarm transmission and management with robust technologies like Zigbee or GSM/GPRS (see Figure 6).

The PSE, after discriminating impacts sent by the 1AU carried by the user, reports potential fall events to the service
provider through alarm SMS. To this end, it uses a commercial GSM/GPRS module in order to validate the
communications in an outdoor scenario, where the majority of FDS alternatives cannot operate. However, for the final
design of the PSE and in order to reduce to the limit the costs of its BOM, shown in the last row of Table 2, an embedded
mobile transceiver and antenna must be used instead of the module. This way, and to the best of authors’ knowledge, the
PSE provides the most optimal and cost-efficient solution for the case of use of human fall detection. Moreover, the costs
of the PSE are even lower compared to other portable options to be used in an outdoor scenario, like a Nexus One
Smartphone P%. Finally, the latency of communications was calculated for the Zigbee data-link in order to assess system
QoS for the saturated ISM band. For this purpose, the physical layer of the IEEE 802.15.4 standard has been evaluated
considering the continuous transmission of data sets from the IAU grouped in frames of 500 ms. Then, the time delay for
up to 5 (32 ms), 10 (65 ms) and 15 (77 ms) simultaneous smart sensors attached to the same PSE has been estimated,
assuming a worst case scenario of 14% transmission error rate of frames. The results obtained are in all cases lower than 1
second, even adding the processing time delay of the PSE (see “Deadline’” row in Table 2), and considering that just a
single IAU is needed for fall detection. Thus, the results obtained meet the up-front design requirements defined in Section
3.A. A deeper analysis of the communication protocol falls out from the scope of this paper B,

66 ISSN 2377-9381 E-ISSN 2377-939X

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

Figure 6. Picture sequence describing the process of indoor fall detection and sending of the corresponding alarm (left to
right; top to bottom)

4 Discussion and conclusions

This paper has discussed the increasing relevance of proper methodologies and development tools to address affordable
mHealth, from the learned experiences during the design and development of a FDS. The aim is to share these experiences
with the scientific community, in order to deal with these issues from a sustainable perspective regarding current standards
and technologies from the loT ecosystem. This is achieved with a two-level implementing process: first, considering from
the design, the capability of porting the software applications to several platforms; second, assessing risks associated with
the software development process itself. In this regard, an especially critical application has been studied that gathers the
challenges analyzed, so as to assess the strategy followed: human fall detection. To accomplish this goal, agile
methodologies and standards like IEC 62304 and IEC 60601 are needed in order to define an iterative software process
that minimizes safety and risks involved, while addressing alarms triggered. The approach also takes advantage of
available IDE tools for automatic conversion of software, which have facilitated the SW development in a high-level
language that eases its installation in several platforms. Besides, the procedures and materials employed have allowed
more time for low-level debugging and optimization within the FDS, regarding the specific hardware considerations of
different platforms.

In the first place, the correct operation of the fall detection algorithm embedded in the FDS was assessed in terms of
specificity and sensitivity, confirming the feasibility of the software development process. Then, the performance of the
FDS was evaluated from two perspectives: real-time performance and test-bed verification. The results obtained
confirmed that the most optimal device was the PSE in comparison to other platforms (see Table 2): the minimal
occupation code of the processing module releases a high percentage of memory for processing other sensors data within
the PSE. In addition, the application spends less than one tenth of a second to make a decision about the occurred event,
which is a reasonable latency for this soft real-time system. Regarding the test-bed validation, it has been demonstrated the

Published by Sciedu Press 67

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

feasibility of the FDS and the PSE with current and low-cost technologies, for a critical operation like fall detection. QoS
metrics have been used so as to analyze the performance of latency communications in the 2.4-GHz ISM band in a hostile
communication channel. The results obtained fulfill by far the requirement of 1 second of latency, even considering a 14%
of data frames lost. Consequently, the results meet the up-front design requirements for the FDS and strengthen the
approach followed for the embedded medical software.

This paper represents some of the challenges involved in the development of affordable mHealth solutions and how to
tackle them with available tools and methodologies. Nevertheless, further research is needed, for instance to test the FDS
in real-life scenarios with elderly participants, which is a current task of the authors to be detailed in future publications.
Besides, it is needed to study how this sustainable development approach of MD may be addressed by healthcare industry
with compliance of certification efforts.

Acknowledgements

The authors are grateful to A. Miquel and A. Cébreces for their helpful assistance in the development of the PSE. This
work was supported in part by the CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) and the
intramural Grant PERSONA, DIAB-Support, PLADEBACT and NEUROMON, in part by the Instituto de Salud Carlos
Il under PI111/00111, and in part by the Direccion General de Investigacion, Tecnologia y Empresa, Government of
Andalucia, under Grants PO8-TIC-04069 and TIC6214. CIBER-BBN is an initiative funded by the 6th National R&D&i
Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud
Carlos 111 with assistance from the European Regional Development Fund.

References

[1] Stankovic JA. Research Directions for the Internet of Things. IEEE Internet Things J. 2014 Feb; 1(1): 3-9.
http://dx.doi.org/10.1109/J10T.2014.2312291

[2] Gartner Says 4.9 Billion Connected [Internet]. [cited 2015 Jun 26]. Available from:
http://www.gartner.com/newsroom/id/2905717

[3] Internet of Everything | ABI Research [Internet]. [cited 2014 Jan 20]. Available from:
https://www.abiresearch.com/research/service/internet-of-everything/

[4] Zhang Y-T, Poon CCY. Health Informatics: Unobtrusive Physiological Measurement Technologies. IEEE J Biomed Health
Inform. 2013; 17(5): 893-893. http://dx.doi.org/10.1109/JBHI.2013.2279187

[5] Brown PJ. Software Portability. Encyclopedia of Computer Science [Internet]. Chichester, UK: John Wiley and Sons Ltd.; [cited
2014 Jan 17]. p. 1633-4. Available from: http://dl.acm.org/citation.cfm?id=1074100.1074809

[6] ISO/IEC 25010:2011 - Systems and software engineering -- Systems and software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models [Internet]. [cited 2015 Jun 26]. Available from:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

[7] Systems Design for Remote Healthcare. New York, NY: Springer-Verlag New York Inc.; 2014.

[8] Koltashev A. A Practical Approach to Software Portability Based on Strong Typing and Architectural Stratification. In:
Bdszérményi L, Schojer P, editors. Modular Programming Languages [Internet]. Springer Berlin Heidelberg; 2003 [cited 2014 Jan
17]. p. 98-101. Available from: http://link.springer.com/chapter/10.1007/978-3-540-45213-3_13.
http://dx.doi.org/10.1007/978-3-540-45213-3_13

[9] Paggetti C, Barca CC, Rodriguez JM. System Integration Issues for Next-Generation Remote Healthcare System. In: Maharatna K,
Bonfiglio S, editors. Systems Design for Remote Healthcare [Internet]. Springer New York; 2014 [cited 2014 Jan 20]. p. 229-49.
Available from: http:/link.springer.com/chapter/10.1007/978-1-4614-8842-2_8. http://dx.doi.org/10.1007/978-1-4614-8842-2_8

[10] Wolf M. Improving Clinical Engineering by Web Apps on Mobile Devices. In: Jobbagy A, editor. 5th European Conference of the
International Federation for Medical and Biological Engineering [Internet]. Springer Berlin Heidelberg; 2012 [cited 2014 Jan 17].
p. 693-4. Available from: http://link.springer.com/chapter/10.1007/978-3-642-23508-5_180

[11] Membarth R, Reiche O, Hannig F, et al. Code Generation for Embedded Heterogeneous Architectures on Android. Proceedings of
the Conference on Design, Automation & Test in Europe [Internet]. 3001 Leuven, Belgium, Belgium: European Design and

68 ISSN 2377-9381 E-ISSN 2377-939X

http://jbei.sciedupress.com Journal of Biomedical Engineering and Informatics, 2015, Vol. 1, No. 1

Automation Association; 2014 [cited 2015 Jun 26]. p. 86:1-86:6. Available from:
http://dl.acm.org/citation.cfm?id=2616606.2616712

[12] Membarth R, Hannig F, Teich J, et al. Generating Device-specific GPU Code for Local Operators in Medical Imaging. Parallel
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International; 2012. p. 569-81.
http://dx.doi.org/10.1109/ipdps.2012.59

[13] 1SO 14971:2007 - Medical devices -- Application of risk management to medical devices [Internet]. [cited 2014 Mar 31]. Available
from: http://www.iso.org/iso/catalogue_detail?csnumber=38193

[14] 1SO 13485:2003 - Medical devices -- Quality management systems -- Requirements for regulatory purposes [Internet]. [cited 2014
Feb 4]. Available from: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36786

[15] IEC 62304:2006 - Medical device software -- Software life cycle processes [Internet]. [cited 2014 Mar 31]. Available from:
http://www.iso.org/iso/catalogue_detail.ntm?csnumber=38421

[16] Dahnoun N, Brand J. Defining a process for rapid processor selection and algorithm development. 2011 7th International
Workshop on Systems, Signal Processing and their Applications (WOSSPA); 2011. p. 259-62.

[17] Schmitt C, Kuckuk S, Kostler H, et al. An Evaluation of Domain-Specific Language Technologies for Code Generation. 2014 14th
International Conference on Computational Science and Its Applications (ICCSA); 2014. p. 18-26.

[18] Perron M, Kamwa |, Dessaint LA. Development of a portable software tool for time domain modal analysis. 2012 11th
International Conference on Information Science, Signal Processing and their Applications (ISSPA); 2012. p. 1371-6.

[19] Estudillo-Valderrama MA, Roa LM, Reina-Tosina J, et al. Design and Implementation of a Distributed Fall Detection System
#x2014; Personal Server. IEEE Trans Inf Technol Biomed. 2009 Nov; 13(6): 874-81. PMid:19775977.
http://dx.doi.org/10.1109/TITB.2009.2031316

[20] Naranjo-Hernandez D, Roa LM, Reina-Tosina J, et al. Personalization and adaptation to the medium and context in a fall detection
system. IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc. 2012 Mar; 16(2): 264-71. PMid:22287249.
http://dx.doi.org/10.1109/TI1TB.2012.2185851

[21] E.800: Definitions of terms related to quality of service [Internet]. [cited 2014 Feb 7]. Available from:
http://www.itu.int/rec/T-REC-E.800-200809-1/en

[22] Cobreces A, Valderrama MAE, Roa LM, et al. Multi-Device Information Management for Real-Time Processing of Biomedical
Signals. In: Long M, editor. World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China
[Internet]. Springer Berlin Heidelberg; 2013 [cited 2014 Mar 31]. p. 2224-7. Available from:
http://link.springer.com/chapter/10.1007/978-3-642-29305-4_584

[23] Oshana R, Kraeling M. Software Engineering for Embedded Systems: Methods, Practical Techniques, and Applications. Newnes;
2013.1201 p.

[24] Carvalho SC, Motta Cardoso FR, Da Cunha AM, et al. A Comparative Research between SCRUM and RUP Using Real Time
Embedded Software Development. 2013 Tenth International Conference on Information Technology: New Generations (ITNG).
2013. p. 734-5. http://dx.doi.org/10.1109/ITNG.2013.112

[25] DSP/BIOS Real-Time Operating System (RTOS) - DSPBIOS - Tl Software Folder [Internet]. [cited 2014 Mar 31]. Available
from: http://www.ti.com/tool/dspbios

[26] Powering the TMS320C6742, TMS320C6746, and TMS320C6748 with the TPS650061 - slva490.pdf [Internet]. [cited 2014 Mar
31]. Available from: http://www.ti.com/lit/an/slva490/slva490.pdf

[27] IEC/CD 60601-1-8 - Medical electrical equipment -- Part 1-8: General requirements for basic safety and essential performance --
Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical
electrical systems [Internet]. [cited 2014 Mar 11]. Available from:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.ntm?csnumber=61754

[28] Estudillo-Valderrama MA, Roa LM, Reina-Tosina J, et al. A proposal of a fall detection algorithm for a Multidevice Personal
Intelligent Platform. 8th IEEE International Conference on Biolnformatics and BioEngineering, 2008 BIBE 2008; 2008. p. 1-4.

[29] Python vs. Matlab — Pyzo - Python to the people [Internet]. [cited 2015 Jul 31]. Available from:
http://www.pyzo.org/python_vs_matlab.html

[30] Google Nexus One Carries $174.15 Materials Cost, iSuppli Teardown Reveals - IHS Technology [Internet]. [cited 2014 Mar 31].
Available from: https://technology.ihs.com/389033/google-nexus-one-carries-17415-materials-cost-isuppli-teardown-reveals

[31] Naranjo-Hernandez D, Roa LM, Reina-Tosina J, et al. SoM: A Smart Sensor for Human Activity Monitoring and Assisted Healthy
Ageing. IEEE Trans Biomed Eng. 2012 Nov; 59(11): 3177-84. PMid:23086195. http://dx.doi.org/10.1109/TBME.2012.2206384

Published by Sciedu Press 69

