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Abstract 
In recent years, there has been a shift from traditional cell culture on two-dimensional substrates towards the use of 
three-dimensional scaffolds for tissue engineering. Ice-templating is a versatile tool to create porous scaffolds from 
collagen. Here we discuss specific considerations for the design of moulds to produce freeze dried collagen scaffolds with 
pore sizes of around 100µm, a range that is relevant to tissue engineering. A numerical model of heat conduction, 
implemented in COMSOL Multiphysics® version 5.0, calculated the temperature contour lines and heat flow vectors 
during cooling for a variety of mould geometries and materials. We show how temperature distribution within moulds 
determines the resulting pore structure of the scaffolds by regulating ice growth, and we validate our simulation against 
experimental results. These simulations are especially useful when working with moulds that contain volumes of more 
than 1cm in each direction. 
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1 Introduction 
Ice-templating techniques can be used for many material systems, such as polymers and ceramics, for applications as 
diverse as pharmaceutical drying, continuous flow catalysts, and tissue engineering scaffolds [1-5]. Producing collagen 
scaffolds by ice-templating has proven to be a very successful technique for tissue engineering, enabling cell culture to 
move from two-dimensional substrates towards three-dimensional scaffolds. They can be used for maintenance of cell 
phenotype in long term culture, creation of more effective drug delivery devices, and studies of whole tissue morpho- 
genesis [6-8].  

The pore architecture of the scaffold influences many of their characteristics such as mechanical properties [9] and fluid 
flow as well as the biological influence exerted by the framework [6, 10]. Both, isotropic structures, those with equiaxed, 
spherical pores throughout, and anisotropic structures, which possess regions of aligned porosity, can be created via 
ice-templating. The properties of these scaffolds can be further tuned with chemical composition and cross-linking and 
have already demonstrated success in the regeneration of tendon, skin and nerve [4, 10-13].  
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In ice-templating, three-dimensional scaffold structures are created during the solidification of a water-based suspension. 
Within the suspension, ice crystals first nucleate, then grow, rejecting the solute to the volume between crystals. Once the 
ice template is formed, it is removed via sublimation during the drying stage, leaving behind a porous three dimensional 
structure which is the inverse of the ice template. In order to tailor the scaffold structure, the growth of the ice template 
must be controlled, which is, in turn, influenced by the two phases of crystallization: ice nucleation and growth [14]. In 
addition, features of the scaffold can also be linked to the annealing process during solidification which we have addressed 
before [15]. 

Creating a defined pore architecture requires control over when and where ice nucleates within the aqueous slurry, and 
how it grows from the initial nucleation point in a given mould. To date, mould design within the tissue engineering 
community has remained limited to trial and error with previous attempts in the literature focusing on utilizing ice- 
templating moulds to create aligned pores [16, 17]. Recently, Muzzio et al. [18] have shown that finite element analysis can be 
a very useful tool when modelling heat flow in vials for freeze drying. More complex numerical approaches are 
successfully used within the crystal growth community to simulate and optimise bulk crystal growth in furnaces (see for 
example [19, 20]), a related, but not identical problem. 

The aim of our work is to construct a numerical model which connects the local thermal environment for ice growth by 
freeze drying to pore architecture of the resulting scaffold and furthermore can be implemented by other researchers. Our 
computer program, implemented in COMSOL Multiphysics® version 5.0, calculates the temperature distribution within 
the mould and slurry during cooling by solving the heat conduction problem with given boundary conditions. By changing 
the thermal properties and geometric design of the ice-templating mould, we can vary the temperature distribution within 
the slurry. The simulations have been validated against experimental work to link the scaffold pore structure created by 
various moulds to design parameters, gaining an in-depth understanding of the underlying principles in mould design. This 
method is especially useful when working with moulds that contain volumes of more than 1 cm in each direction and are 
cooled in a commercial freeze dryer where cooling occurs slowly. 

2 Methods and materials 

2.1 Setting up the computational model 
The rate of crystal growth in general depends on three physical processes: mass diffusion, flow rate of latent heat away 
from the liquid/crystal interface and the specifics of the particle attachments at the liquid/crystal interface [21]. In the case of 
the water/ice system, the flow rate of latent heat away from the surface plays by far the most important role [22]. We will 
therefore focus on the thermal aspects of the model. 

We are interested in bulk samples with external dimensions of 1 cm and larger, produced in a freeze dryer.  In this case, the 
overall heat production due to the latent heat outweighs the heat removal along the sides of the mould. As a consequence, 
two growth phases are established. During phase one, the initial crystal develops very quickly from the nucleation site 
within the already supercooled water/collagen mixture. Its growth rate only slows down when the water/collagen mixture 
warms up to melting temperature as a result of latent heat release. Part of this initial ice skeleton may melt directly after 
this phase if it is in direct contact with water or mould wall at temperatures above the melting temperature [23]. The 
sequential, secondary ice growth, depends on the heat removal through the walls of the container, with crystals growing 
from the dendritic ice skeleton that had formed during the initial fast growth.   

This leads to the following notation for our experiments. Figure 1a shows a schematic of the freeze dryer with sample. We 
record the temperature as a function of time with thermocouples at various points (1) - (4). The freeze drying process, 
Figure 1b, is divided into six stages: the initial cooling stage, a first stage of freezing (I) which is very short (∆t < 4 s) and 
a second stage of freezing (II) which is much longer (30-60 minutes). Once the water/collagen slurry is frozen, it is kept 
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Table 1. Thermal properties of polycarbonate, stainless steel and water 

Material 
Thermal conductivity k 
W/m K 

Density ρ 
kg/m3 

Heat capacity Cp 
J/kg K 

Thermal diffusivity α 
m2/s 

Polycarbonate 0.12 1,200 1,250 8.0×10-8 

Stainless steel 15 7,900 460 4.13×10-6 

Water (slurry) 0.556 1,006 4,200 1.32×10-7 

The moulds were cylindrical with a symmetry axis of rotation at r = 0. We varied the diameter of the inner space of the 
moulds: d = 16 mm and d = 45 mm (metal), d = 20 mm and d = 32 mm (polycarbonate), and d = 16 mm and d = 20 mm 
(combined). The slurry height was kept at z = 15 mm for comparison between moulds. 

Figure 2 shows the moulds with their finite element meshing. The meshing parameter was “finer physics-controlled 
meshing” (COMSOL Multiphysics® ver. 5.0). The rotational symmetry of the moulds reduces the three dimensional 
computational problem to a two dimensional one. 

2.3 Experimental set-up 
For the corresponding experiments, a collagen suspension of 1 wt% was prepared from bovine Achilles tendon, type I 
collagen (Sigma Aldrich), hydrated in 0.05 M acetic acid. Slurries were homogenised for 30 minutes at 13,500 rpm in an 
ice water bath (VDI 25, VWR International Ltd, UK), and centrifuged (Hermle Z300) for 5 minutes at 2,500 rpm. Prepared 
suspensions were poured into various freeze drying moulds.  

A stainless steel shelf was placed on the cooling shelf of the freeze dryer to ensure a more even temperature distribution 
along the cooling shelf (see Figure 1). The moulds with slurry were cooled at a set rate of 0.9 °C/min = 0.015 °C/s, and 
held for 90 minutes at -30°C. It was found that this cooling rate produced pore sizes in the resulting collagen scaffolds that 
are useful for cell growth [22]. The frozen slurries were then lyophilised using a Virtis freeze dryer (SP Industries, USA) at 
0°C for 20 hours under a vacuum of around 10 Pa. We wrote a LabVIEW® computer program to record the thermocouples 
with a time resolution of ∆t = 4s. This enabled us to establish an upper time limit on the initial freezing phase. 

X-ray micro-computed tomography (μCT) (Skyscan 1172) scans were taken of the complete scaffolds with a voltage of  
25 kV, current of 138 μA. Reconstructions were performed with the software NRecon (Skyscan). 

3 Results 
We have divided our results into three sections. First, we discuss how we obtained boundary conditions for the computa- 
tional model from experiments. We then discuss results for two different sets of boundary conditions. 

3.1 Boundary conditions 
The temperature near the mould along the shelf is measured and used as the boundary condition at the base of the mould. 
For a direct comparison between moulds (section 3.2), we used COMSOL’s inbuilt ramp function with the following 
parameters for the ramp function: location = 0, slope = -0.0137 (as measured), cut-off = -53, size of transition zones = 300. 
We add Tstart = 296 K to the ramp function in the boundary condition. For comparison with experimental results (section 
3.3), we used numerical fits to actual measurements. 

The boundary between mould and air plays an important role during cooling in the freeze dryer. The air pressure in the 
freeze dryer during cooling and freezing is typically around 5×104 Pa after sealing the door. This provides a significant 
thermal link between the internal space of the freeze dryer and the outside resulting in the air being cooled by the cooling 
shelf and heated by the outside room. The temperature dependence of the air in the freeze dryer was measured by 
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Thirdly, we combined both materials within one mould. A stainless steel sleeve outside the smaller polycarbonate mould 
leads to a faster cooling rate, leading to T = 267 K being reached after t = 3,331 s (55.5 min). The temperature contour lines 
are similar to the metal mould across the slurry and polycarbonate mould, see Figure 4(e). The walls of the polycarbonate 
mould are fairly thick and contain most of the volume with temperature contour lines that have a large vertical component. 
As a last step, we inserted a stainless steel sleeve as an insert into the smaller polycarbonate mould, see Figure 4(f). This 
led to the smallest temperature gradients within the slurry for all of the moulds shown here, and it took t = 3,604 s (60.1 
min) to cool to the temperature T = 267 K. 

3.3 Importance of time of nucleation  
Nucleation events occur stochastically. In our case, we found experimentally that the nucleation events occurred between 
-4°C and -10°C. It seems that, often, when a mechanical valve switches in the freeze dryer, nucleation occurs due to the 
mechanical vibrations providing enough energy to trigger an event. 

In Table 2, we compare the time difference between the point at which the coldest point in the slurry reaches T = -4°C in 
our simulation and the point at which the warmest point reaches T = 0°C. The first point indicates the time at which 
nucleation first becomes possible. The second point indicates the time at which the whole slurry is supercooled below the 
melting temperature, and ice growth becomes possible throughout the whole slurry. This time interval is crucial when 
designing a mould to create isotropic structures. A nucleation event between the two time points leads to anisotropic 
scaffolds while nucleation after the second time point leads to isotropic scaffolds. 

Table 2.  Time difference between the point at which the coldest point reaches T = -4°C and the point at which the warmest 
point reaches T = 0°C. For explanation of the relevance of the two time stamps see text  

Mould Mould material 
Time at which coldest point 
reaches T = -4°C (min) 

Time at which warmest point 
reaches T = 0°C (min) 

Time difference 
(min) 

1 Stainless steel 33.7 40.8 7.1 

2 Stainless steel 33.6 45.0 11.4 

3 polycarbonate 63.3 72.5 9.2 

4 polycarbonate 64.2 72.4 8.2 

5 both 52.2 58.3 6.0 

6 both 56.0 62.0 6.0 

We include simulation results for the large stainless steel mould, mould 2, at different time stamps to show the time 
development of the temperature contour lines. As can be seen around the time of nucleation, the temperature gradients 
within the slurry remains very similar but the temperature contour line of the melting temperature T = 0°C moves within 
the slurry (see Figure 5). 

3.4 Comparing experimental results with simulations 
In Figure 6, we have compared simulations with experimentally obtained scaffolds. This was enabled by choosing 
experimentally obtained boundary conditions for each mould. In addition, we adjusted the time of nucleation to match that 
of the experiments in which the scaffolds were fabricated. 

Water/collagen slurry was freeze-dried in the six moulds using the freezing protocol mentioned in the method section. 
After the experiment, µCT pictures were taken from scaffolds made in mould 1 to 6, see Figure 6 (a-f), and for µCT 
settings see the method section. While the pores in mould 2, 3 and 4 are anisotropic (see Figure 6(b), (c) and (d)), the pores 
in mould 1, 5 and 6 (see Figure 6(a), (e) and (f)), are isotropic. When compared with the thermal profiles, now using the 
individual experimental cooling boundary conditions, it can be seen that an ice front is established when the contour of the 
melting temperature (for DSC data of our slurries see [15]) lies within the slurry at the point of a nucleation event. An ice 
front leads to anisotropic pores. We can also predict the direction of the ice flow. As the temperature of the slurry above the 
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Our results can be used to design moulds with desired properties for the scaffold. When the entire slurry is well below the 
melting temperature at the time of nucleation with a small temperature gradient across the slurry, very isotropic scaffolds 
can be obtained. Small temperature gradients in large moulds can be obtained by an inner metal sleeve inside a 
polycarbonate mould. In contrast, when parts of the slurry are cooled much faster than others, such as in larger stainless 
steel moulds, an ice front can develop when part of the slurry is still above the melting temperature and anisotropic pores 
structures are formed as a result. 

Boundary conditions such as cooling rate of the shelf and heat conduction through the surrounding air play a very 
important role in the cooling process. These parameters can be changed and will affect the temperature contour profile in 
the slurry. For example, when comparing results for mould 1 in Figure 4 and Figure 6, the influence of cooling rate can be 
seen. In Table 3, we record the experimentally measured cooling rates which varied between runs due to the variability in 
thermal contact between the cooling shelf of the freeze dryer and the stainless steel shelf that we use (see Figure 1). The 
experimentally measured cooling rate in Figure 6 for mould 1 is about 10% higher than in Figure 4 which was taken from 
the experiments with mould 3. The faster cooling rate leads to a smaller temperature gradient throughout the slurry. 

Table 3. The experimentally measured temperature of the slurry at the base (location 2 in Figure 1), the measured cooling 
rate of the stainless steel shelf and the time in the simulation when we record a nucleation event  

Mould Mould material 
Temperature at base of 
slurry (°C) 

Cooling rate as measured on 
stainless steel shelf (°C/min) 

Time of nucleation event 
(min) in simulation 

1 Stainless steel -6.8  -0.90 37.2 

2 Stainless steel -7.0 -0.89 37.8 

3 Polycarbonate -6.2 -0.82 68.2 

4 Polycarbonate -4.9 -0.82 66.0 

5 Both -8.9 -0.79 68.4 

6 Both -9.0 -0.79 62.9 

We should point out that the comparison in Figure 3 also shows that it is possible to change the cooling rate of the top of 
the slurry by reducing the heat conduction through the air by, for example, adding a thermal mass such as a glass slide to 
the top of the mould (leaving a small gap to enable sublimation in the second step of the freeze drying process). 

While our simulations capture the physical boundary conditions that determine scaffold architecture, a limitation of our 
approach remains - that ice growth in the presence of collagen is a highly dynamical system, and the collagen scaffold 
structure evolves as it grows. We have already shown experimentally in earlier publications [15, 32] that annealing during 
and after growth can change the pore size (but not pore architecture) of the scaffold. To incorporate finer details of pore 
structures in our simulation, we need to extend our model to include dynamics of ice crystal growth in the presence of 
collagen. Currently, the phase change model given in COMSOL Multiphysics® ver. 5.0 cannot capture the sudden 
temperature increase as a result of the very fast initial ice growth, freezing step I (see Figure 1). In addition, the nucleation 
step is missing from the model. Therefore, the ice growth model in COMSOL Multiphysics® ver. 5.0 results in an 
incorrect starting point for the resulting slower ice growth freezing step II (see Figure 1). In the future, we plan to 
implement our own physical description of the process. 

The phase transition between ice and water is a first order phase transition, and therefore depends on a nucleation event 
which is a stochastic event. As can be seen from Table 3, the temperature (here taken as the temperature at base of the 
mould, the most likely place for nucleation) at which ice nucleates varies between runs. Experimentally, we plan to 
address this problem by using an external control such as a mechanical perturbation to trigger nucleation. 
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5 Conclusions 
The results show that we can predict from our computer simulation which mould cools the slurry more evenly with less 
vertical gradients. By changing boundary conditions such as cooling rate and heat conduction through the surrounding air, 
we can vary the overall temperature gradients in the slurry. Keeping in mind that, without external control, the time of a 
nucleation event is stochastic, we can calculate the time window in which anisotropic scaffolds are possible and when 
scaffolds will have isotropic pores. This enables us to design our moulds in a way that maximises the yield of desired pore 
architecture. 

This approach may be transferrable to other freeze-casting procedures that use other templating substances. We will use 
this result to design moulds with more complex geometries, especially looking into combining mould materials with a 
range of thermal properties. 
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