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Abstract 

A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to 
increase his spatial science expertise and to assess the hands-on instruction methodology employed within the 
Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building 
features estimated remotely with LiDAR data, within the Pictometry remotely sensed web-based interface, and in 
situ with a laser rangefinder were compared to actual building feature height measurements. A comparison of 
estimated height with actual height indicated that all three estimation techniques tested were unbiased estimators of 
height. An ANOVA, conducted on the absolute height errors resulting in a p-value of 0.035, concluded the three 
height estimating techniques were statistically different at the 95% confidence interval. A Tukey pair-wise test found 
the remotely sensed Pictometry web-based interface was statistically more accurate than LiDAR data, while the laser 
range finder was not different from the others. The results indicate that height estimates within the Pictometry 
web-based interface could be used in lieu of time consuming and costly in situ height measurements. The findings 
also validate the interactive hands-on instruction methodology employed by Geographic Information Systems faculty 
within the Arthur Temple College of Forestry and Agriculture in producing spatial science graduates capable of 
utilizing spatial science technology to accurately quantify, qualify, map, and monitor natural resources.  
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1. Introduction 

1.1 Spatial Science within a Natural Resource Curriculum 

Undergraduate students completing a Bachelor of Science degree in Spatial Science in the Arthur Temple College of 
Forestry and Agriculture (ATCOFA) at Stephen F. Austin State University (SFA), Nacogdoches, Texas, USA, 
concentrate on learning real-world applications of spatial science technology within a natural resource context. The 
mission statement of ATCOFA is to maintain excellence in teaching, research and outreach to enhance the health and 
vitality of the environment through sustainable management, conservation, and protection of natural resources. The 
college is dedicated to comprehensive undergraduate and graduate education, basic and applied research programs, 
and service (Bullard, Coble, Coble, Darville, & Stephens-Williams, 2014). To achieve the mission statement, 
undergraduate course work in the Spatial Science program within ATCOFA focuses not only on traditional classroom 
instruction combined with outdoor lab instruction but also focuses heavily on integrating hands-on instruction via 
one-on-one faculty interaction to produce a more well-rounded and more competent graduate. Students who attend 
ATCOFA for the Spatial Science degree focus on hands-on instruction, field exercises and real-world applications 
using the most current geospatial technology (Unger, Kulhavy, Hung, & Zhang, 2014).  

Spatial science is the study of spatial information describing the Earth, its physical features and the built environment. 
Spatial technology, which has been identified as one of the targeted industry sectors within the United States by the 
President’s High Growth Job Training Initiative, incorporates aerial photo interpretation, digital image processing, 
geographic information systems (GIS), and global positioning systems (GPS) technology. In addition, spatial science 
was identified as one of the important tools in forestry and natural resources in a recent ATCOFA curriculum 
reevaluation (Bullard, Coble, Coble, Darville, & Stephens-Williams, 2014)  

Within ATCOFA, the focus is on training undergraduate students in the Spatial Science program how to use aerial 
photographs, remotely sensed digital imagery, GIS, and GPS to quantify, qualify, map, and monitor natural resources 



www.sciedu.ca/ijhe International Journal of Higher Education Vol. 4, No. 1; 2015 

Published by Sciedu Press                         53                         ISSN 1927-6044   E-ISSN 1927-6052 

to solve problems, issues, and concerns natural resource managers address on a daily basis. Within the Spatial 
Science program students can opt for one of two emphasis tracks: Natural Resources or Surveying.  

Undergraduate students pursuing the Bachelor of Science degree in Spatial Science must complete 120 credit hours 
of instruction. General education requirements at SFA equal 42 credits. A student must also complete a common core 
of spatial science related course work equaling 42 credits while the student chooses an additional 36 hours of spatial 
science or natural resource related course work depending on their chosen option within the program. 

Throughout their undergraduate career within ATCOFA, and in particular within the spatial science core and major, 
the focus of the faculty is on instructing students within an intensive hands-on environment to maximize one-on-one 
faculty interaction. Spatial science relies on computer software and a focus on hands-on instruction is crucial to a 
student’s success and mastery of both the theoretical and applied aspects of spatial science. 

The focus of one-on-one faculty instruction culminates in a senior level capstone course entitled Ecological Planning 
that incorporates elements from each of their previous courses. Within Ecological Planning students are required to 
complete a real-world research project incorporating both laboratory and field data that portrays their mastery of 
spatial science technology. 

Examples of research projects previously completed include designing a national historic trail that incorporates local 
history and culture into an interactive GIS system, using a remotely controlled drone to rate the health of urban forest 
trees from a distance, and mapping the spatial distribution of endangered plants using high spatial resolution 
remotely sensed data. Although technically assigned to one faculty member, all faculty members within the spatial 
science program contribute to the individual student research projects within the senior level capstone course by 
design to increase a student’s mastery of applied spatial science. 

1.2 The Need for Accurate Height Measurements 

Knowing the height of features on the Earth’s surface is crucial to any spatial science endeavor. Although the spatial 
location of geographic features is crucial to understanding their role within a natural resource or non-natural resource 
context, the vertical height of a surface feature like a bridge, building, tree, or an eagle’s nest above ground is also 
crucial to its management. Although vertical height can be estimated in situ with a traditional laser rangefinder it can 
be time consuming and expensive to estimate and record the in situ height of multiple surface features within an 
inaccessible or large geographic area (Asner et al., 2002). 

Remote sensing represents the ability to obtain information about the Earth’s surface from a distance using 
electromagnetic energy. Remote sensing, which has been a mainstay of spatial science for decades, typically involves 
using aerial photographs or remotely sensed digital imagery to quantify and qualify natural resources (Campbell & 
Wynne, 2011). Remote sensing with its ability to collect data from a synoptic perspective has the advantage of 
acquiring information over a wide geographic area within one image and can be more efficient in terms of cost and 
time than in situ assessments.  

1.2.1 LiDAR Data 

Light Detection and Ranging (LiDAR) data, a relatively new form of remotely sensed data as compared to traditional 
digital or analog imagery obtained from satellites or an aerial platform, are currently being integrated into the 
undergraduate spatial science curriculum within ATCOFA. LiDAR data have been used to measure the height of 
vertical features within a landscape by using laser-scanning from an airplane to estimate height and elevation of the 
physical features of the landscape (Gatziolis, Fried, & Monleon, 2010; Jurisch & Mountain, 2008; Maltamo, Hyyppa, 
& Malinen, 2006). The return time from a surface feature back to the LiDAR scanner for each pulse of light is used 
to estimate surface elevation of a geographic feature. The difference in elevation between the top of an object and the 
bare ground it stands on is the object’s measured height. 

Using narrow-beam LiDAR, height estimates were within 0.43 m of actual tree height; and 0.55 m of actual tree 
height using wide-beam LiDAR (Anderson, Reutebuch, & McGaughey, 2006). Popescu and Wynne (2004) and 
Popescu, Wayne and Nelson (2002) found LiDAR and multispectral data fusion were satisfactory in estimating forest 
plot-level tree height accounting for 97% of the variation. O’Beirne (2012) calculated coefficient of determinations 
ranging from 0.92 to 0.96 comparing LiDAR data to field height measurements of trees in an urban environment.  

1.2.2 Pictometry Data 

High spatial resolution multispectral Pictometry data, another relatively new form of remotely sensed data, are 
combined into a web-based interface that has the potential to revolutionize height estimation from a distance. 
Pictometry data are also being integrated into the undergraduate spatial science program within ATCOFA to 
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Table 1. Summary of all 30 building feature actual height measurements and in situ height estimates. 

Site Actual Height Pictometry LiDAR Laser 
  (meters) (meters) (meters) (meters) 
1 4.54 4.47 4.82 4.33 
2 6.01 5.95 6.23 5.61 
3 4.57 4.60 4.52 4.57 
4 3.76 3.66 3.87 3.60 
5 3.58 3.52 3.70 3.51 
6 4.51 4.47 4.64 4.45 
7 4.55 4.47 4.49 4.54 
8 5.23 5.13 5.54 5.18 
9 5.32 5.25 5.20 5.12 

10 3.58 3.19 3.31 3.51 
11 4.85 4.89 4.98 4.66 
12 3.61 3.63 3.69 3.57 
13 3.41 3.33 3.28 3.45 
14 3.45 3.36 3.56 3.41 
15 2.66 2.43 2.56 2.62 
16 2.49 2.44 2.54 2.41 
17 3.61 3.53 3.61 3.57 
18 2.33 2.26 2.60 2.23 
19 2.20 2.13 2.35 2.13 
20 2.27 2.27 2.54 2.16 
21 5.34 5.38 5.29 5.49 
22 2.13 2.13 2.27 2.01 
23 2.53 2.41 2.59 2.53 
24 3.67 3.48 3.91 3.81 
25 2.66 2.68 2.70 2.53 
26 3.45 3.47 3.32 3.38 
27 3.39 3.37 3.39 3.20 
28 4.60 4.63 4.54 4.42 
29 4.52 4.36 4.72 4.30 
30 3.57 3.51 3.84 3.57 

Mean 3.75 3.68 3.82 3.66 
interface estimates, 0.07 m for the LiDAR data height estimates, and -0.09 m for the laser rangefinder estimates 
indicating that all three estimation techniques tested were unbiased estimators of height. For an average accuracy 
comparison, the LiDAR data were found the least accurate among the three, with the highest mean absolute error 
(0.14 m), the highest mean absolute percent error (4.00%), and the highest RMSE (0.16 m) (Table 2). 

3.2 Statistical Analysis 

An ANOVA was conducted on the absolute errors to determine if the accuracy difference between height estimates 
among the three remote sensing methods was statistically significant. The results of a p-value of 0.035 concluded  

Table 2. Mean error, mean absolute error, mean absolute percent error and RMSE for all 30 remotely sensed building 
feature height estimates. 

Error Actual   
Measurement 

Method   
Assessment Height Pictometry LiDAR Laser 

Mean Height (m) 3.75 3.68 3.82 3.66 
Mean Error (m) n/a -0.07 0.07 -0.09 

Mean Absolute Error (m) n/a 0.08 0.14 0.11 
Mean Absolute Percent Error (%) n/a 2.28 4.00 2.83 

RMSE (m) n/a 0.11 0.16 0.14 
the difference was significant at the 95% confidence interval (Table 3). A Tukey pair-wise test was performed and 
found the LiDAR technique was significantly less accurate than the Pictometry technique, while the laser ranger 
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finder technique was not different from the others (Table 4). In measuring building feature height, the Pictometry 
estimated height on screen within the Pictometry web-based interface achieved the same level of accuracy as using a 
laser rangefinder in the field. In addition, the Pictometry height estimation was more accurate statistically than height 
estimated using LiDAR data. 

Table 3. Summary table of an ANOVA analysis of absolute error. 

SUMMARY 

Groups Count Sum Average Variance 

Pictometry 30 2.40 0.0801 0.0062

LiDAR 30 4.15 0.1383 0.0082

Laser 30 3.18 0.1060 0.0076

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 0.0511 2 0.0255 3.4802 0.0352 3.1013

Within Groups 0.6384 87 0.0073

Total 0.6895 89         
4. Conclusions 

The ease of remotely sensed height estimation demonstrated by a senior spatial science undergraduate student using 
on-screen Pictometry data in a web-based interface and LiDAR data with ArcMap 10.1 GIS software reinforces the 
use of these methods to estimate height remotely in lieu of in situ assessments. Errors of remotely sensed height 
estimates, when compared with actual height measurements, were close to zero and ranged from -0.07 m to 0.07 m 
indicating little difference between estimated and actual height measurements. A Tukey pair-wise test found the 
remotely sensed Pictometry web-based interface was statistically more accurate than LiDAR data, while the laser 
range finder was not different from the others. The results indicate that height estimates within the Pictometry 
web-based interface could be used in lieu of time consuming and costly in situ height measurements.  

Table 4. Results from a Tukey pair-wise test. 

Measurement Tukey Least Square Mean 

Method Level (meters) 

LiDAR A 0.14 

Laser A B 0.11 

Pictometry   B 0.08 
The findings validate the interactive hands-on instruction methodology employed by the GIS faculty within ATCOFA. 
Using spatial science technology a senior undergraduate student under the direction of GIS faculty learned how to 
estimate the height of surface features from a distance using remotely sensed data. The high level accuracy of the 
students applied height estimates validates the hands-on instruction methodology employed within the Bachelor of 
Science in Spatial Science program within ATCOFA at SFA. The results validate ATCOFA’s mission statement of 
producing spatial science graduates capable of utilizing spatial science technology to accurately quantify, qualify, 
map, and monitor natural resources.  
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