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Abstract 
The forecasting of heteroscedastic models has been a popular subject of research in recent years. The objective of this 
study is to model and forecast the volatility of the Russell 3000 index during 2000–2015, using various models from 
the ARCH family. The analysis covers from October 2, 2000 to April 29, 2015 as an in-sample set, and from April 30, 
2015 to September 16, 2015 as an out-of-sample set. The measure of the difference between the predicted volatility and 
the stock’s squared continuously compounded rate of return were estimated by using MAE, MAPE and RMSE. Based 
on out-of-sample statistical performance, the results reveal that the best estimated model is EGARCH(1,1), and the 
best model to make dynamic forecasts of volatility is TARCH(1, 1). 
Keywords: forecasting, volatility, ARCH, GARCH, GARCH-M, EGARCH, PARCH, TARCH, Hodrick-Prescott 
Filter, economic cycles, asymmetric effect 
1. Introduction 

It has become more important for financial institutes to pay attention to the movements of a financial asset. These 
movements, seen as the risk of the assets, are estimated by the volatility. The non-stationary nature of the series is one 
of the problems with modelling the volatility. The movements are inconstant, and there are periods with both low and 
high movements. In 1982, Engle proposed the ARCH model (autoregressive Conditional Heteroscedasticity Model) 
which was the first model that assumed that volatility is not constant. The ARCH model has been transformed and has 
led to more sophisticated models, such as GARCH, EGARCH, PARCH and TARCH. In predicting volatility we must 
ask:Which model captures the volatility better? Could we obtain a more efficient forecast accuracy with a model that 
better captures volatility? Actually, the results of research in the model’s performance is conflicting and confusing. 
These observations lead the author to determine how well these different models perform in terms of forecasting. This 
study focuses on the equity market, It contributes to the existing finance literature by investigating the U.S. stock 
market during the recent period. 
The structure of this article is as follows. Section 2 provides a brief overview of the existing literature. Data and 
methodology are described in section 3 which recalls the different ARCH Family models. Section 4 displays the results 
of this study. 
2. Literature Review 

One of the first studies in conditional variance was the ARCH model proposed by Engle (1982). In his models, the 
variance of the current error term is assumed to be a function of the actual sizes of the previous time period’s error 
terms. But Bollerslev (1986) points out the relatively long lag in the conditional variance equation. To avoid problems 
with negative variance parameter estimates, he proposed the generalization of the ARCH model. To account for the 
presence of asymmetric effects the EGARCH model was proposed by Nelson (1991). Poon and Granger (2003) noted 
that due to the negative relationship between volatility and shocks, models that allowed for asymmetric effects were 
able to provide better forecasts.  
For Bracker and Smith (1999), both the GARCH and EGARCH models are optimal for forecasting the volatility of the 
copper futures market. Carvalho et al. (2006) found evidence of asymmetric effects when using the EGARCH model. 
Sadorsky (2006) pointed out that there is one type of market that cannot be generalized across other markets as can 
equity markets and foreign exchange markets which are usually used in volatility modeling. In general stocks with 
higher kurtosis were better predicted by using the GARCH model, and the EGARCH was better for stocks with lower 
kurtosis. Ederington and Guan (2004) proposed the GARCH(1,1) model for long memory financial markets, but 
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Appendix). Applying the Dickey-Fuller test and the Phillips-Perron test to the series confirms this (Table A2, A3 in the 
Appendix), and suggests that it cannot be used to model volatility. 
In general, the movements of the stock indices series are non-stationary and not appropriate for the study purpose. So, 
it is mandated to convert the daily price into the return series. The series of the Russell 3000 index is transformed into 
returns by using the following equation: ܴ௧ = ቀ షభቁ − 1          (1) 

Where, ܴ௧= the rate of return at time t  ௧ܲ = the price at time t  ௧ܲିଵ = the price just prior to the time t 

Table 1 summarizes the statistics on returns, showing that the Russell 3000 index have an average daily return of 
0.0001833 percent and a standard deviation of 0.01264. The skewness coefficient is –0.03531, its sign being common 
to most financial time series. The kurtosis value is higher than 3, implying that the returns distribution has fat tails. The 
ARCH family of models should, therefore, be used to account for these characteristics of the data. It is imperative when 
modeling such a series that it be stationary and the data mean-reverting. For this purpose, the Dickey-Fuller test is 
applied to the returns series (Table A4 in the Appendix), and the results show that the series is stationary. On 
application, the Phillips-Perron test also indicates that the series is stationary and can be used for modeling purposes 
(Table A5 in the Appendix). 

 
Table 1. Summary statistics for returns 

 Obs Mean Std. Dev. Min Max Skewness Kurtosis 

Returns 3902 0.0001833 0.01264 -0.09280 0.11474 -0.03531 8.38326 

 
The ADF test as well as the PP test are used to get confirmation regarding whether the return series is stationary or not. 
The values of the ADF test statistic, -68.545, is less than its test critical value, -3.410, at 5%, level of significance which 
implies that the crude oil price return series is stationary. The findings of the PP test also confirm that the return series 
is stationary, since the values of the PP test statistic is less than its test critical value. The plotted autocorrelation and 
partial autocorrelation of squared returns indicate dependence and imply time-varying volatility (Figures A3 and A4 in 
the Appendix). 

3.2 Specification of the Models Used in This Study 
To model the volatility of the returns, it is necessary to determine their mean equation. The present returns depend on 
returns in previous periods. This is the autoregressive component. The residual terms of previous periods are 
considered the moving order component. To determine the order of the mean equation we plot the autocorrelation and 
partial autocorrelation of the returns series. 
The returns series exhibits “volatility clustering” which is found in most financial time series. This volatility clustering 
can be seen in Figures A5 and A6 in the Appendix. In order to model behavior such as volatility clustering, the variance 
of the error term is allowed to depend on its history. Engle’s (1982) classic ARCH model simultaneously models the 
mean and variance of a series.  
3.2.1 ARCH(q) Model 

In the ARCH model (Engle 1982) the variance of the current error term is considered to be a function of the actual size 
of the previous time period’s error terms. The ARCH model is a non-linear model in which the variance does not need 
to be constant. The error terms are divided into a stochastic component and a time dependent standard deviation : ߳௧ =  ௧           (2)ݖ௧ߪ

The random variable is a white noise process, and the series ߪ௧ଶis modelled by: ߪ௧ଶ = ܽ + ܽଵ߳௧ିଵଶ + ⋯+ ܽߝ௧ିଶ = ܽ + ∑ ܽୀଵ ௧ିଶߝ           (3) 

Where ܽ > 0	ܽ݊݀	ܽ > 0. 
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3.2.2 GARCH(p, q) Model 

Bollerslev (1986) and Taylor (1986) generalized the ARCH model which led to their independent development of the 
GARCH model. The GARCH model is a solution to avoid problems with negative variance parameter estimates using 
a fixed lag structure. The GARCH(p, q) model is shown below where p is the order of the GARCH terms ߪଶ and q is 
the order of the ARCH terms ߝଶ. ߪ௧ଶ = ݓ + ܽଵ߳௧ିଵଶ + ⋯+ ܽߝ௧ିଶ + ௧ିଵଶߪଵߚ + ⋯+ ௧ିଶߪߚ  = ݓ +∑ ܽୀଵ ௧ିଶߝ + ∑ ୀଵߚ ௧ିଶߪ            (4) 

The form of GARCH(1,1) is given below: ߪ௧ଶ = ܽ + ܽଵߝ௧ିଵଶ + ௧ିଵଶߪߚ          (5) 
The M in GARCH-M stands for «in the mean». The GARCH-M (1,1) is written as: ݕ௧ = ሾ݃ሺݔ௧ିଵ)ሿ + ݂ሺߪ௧ିଵଶ ) + ௧ߝ ௧             (6)ߝ =  ௧ߪ௧ݖ
The equation shows that the returns (ݕ௧)	has a positive relation to its own volatility.  

3.2.3 EGARCH Model 

The EGARCH model was developed by Nelson (1991). The logarithmic function ensures that the conditional 
variance is positive and, therefore, the parameters can be allowed to take negative values. The form of EGARCH(1,1) 
is given below : 

log ௧ଶߪ = ݓ + ߚ	 log ௧ିଵଶߪ + ߛ ఌషభටఙషభమ + ܽ ቌ|ఌషభ|ටఙషభమ − ට2 ൗߨ ቍ        (7) 

3.2.4 PARCH Model 

The PARCH model is a GARCH model with an additional term to account for the asymmetric effect. It employs an 
indicator function as follows (PARCH(1, 1)): ߪ௧ଶ = ܽ + ܽଵߝ௧ିଵଶ + ௧ିଵଶߪߚ + ௧ିଵଶߝߛ  ௧ିଵ         (8)ܫ
The indicator function takes a value of 1 if the error > 0, and 0 otherwise. For the effect of the previous period’s bad 
news to be greater than the effect of good news of the same magnitude, γ should be significant and have a negative 
sign. 

3.2.5 TARCH Model 

The Threshold GARCH (TARCH) model was proposed by Glosten, Jagannathan and Runkle in 1993 and Zakoian 
(1994) independently. The coefficients, α and γ, capture the effect of good and bad news respectively. The TARCH 
model adds a separate variable for negative shocks. ߪ௧ଶ = ݓ + ∑ ܽߝ௧ିଶୀଵ + ∑ ௧ିଶୀଵߪߚ + ∑ ௧ିଶߝߛ I௧ିୀଵ          (9) 

The idea behind TARCH is that it should be better to capture the movements of the negative shocks, due to the fact that 
they have a bigger effect on the volatility than the positive shocks have.  
3.2.6 Asymmetric Effect 

The ARCH and GARCH models are easy to identify and estimate. But the symmetric specification is not appropriate if 
« bad news » has a more noticeable effect on volatility than «good news». This is because their conditional variance 
which depends only on squared errors is unaffected by the sign of the past period’s errors. We need to test the presence 
of asymmetric effects before applying the asymmetric models. Engle and Ng (1993) propose various tests to 
accomplish this. After the GARCH regression, the squared residuals is given by: ߝ௧ଶ = ܽ + ܽଵI௧ିଵି + ௧ିଵିܫ (10)         ݎݎݎ݁ = 1 when ߝ௧ିଵ < 0, and 0 otherwise. If the dummy coefficient is significant and positive, this suggests the 
presence of asymmetric effects. Then we can determine whether the size of the negative shock also affects the impact 
on conditional variance by equation (11). For the existence of a size effect, the coefficient must be negative and 
significant. ߝ௧ଶ = ܽଶ + ܽଷܫ௧ିଵି ௧ିଵߝ +  (11)                 ݎݎݎ݁
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The positive sign bias test determines if the size of a positive shock impacts its conditional variance, the regression is 
given by equation (12). For the size effect to be present, the coefficient of ܫ௧ିଵି ௧ିଵߝ  and ܫ௧ିଵା ௧ିଵߝ  must be 
significant. ߝ௧ଶ = ܽଶ + ܽଷܫ௧ିଵା ௧ିଵߝ +  (12)              ݎݎݎ݁

3.3 Measures of the Statistical Performance of the Model  

After making the forecasts, evaluating them is the next step. For comparison purposes, we compare out-of-sample 
forecasts with historical volatility. The statistical performance measures, like mean absolute error (MAE); mean 
absolute percentage error (MAPE); and root mean squared error (RMSE); are applied to pick the best performing 
model both in the in-sample data set and the out-of-sample data set in this study.  ܧܣܯ =	 ൫1 ݊ൗ ൯∑ ොଶߪ| − ଶ|ୀଵߪ ܧܲܣܯ (13)              = ሺ1/݊)∑ |ሺߪොଶ − ଶ|ୀଵߪ/(ଶߪ ܧܵܯܴ (14)               = 1 ݊ൗ ඥ∑ ሺߪොଶ − ଶ)ୀଵߪ ²                               (15) 
4. Empirical Findings (Analysis and Results) 

The objective is to determine the performance of these different models in terms of forecasting volatility. In this 
forecasting approach out-of-sample forecasts are assessed using the last 100 observations of the sample. The study 
period contains 3, 903 trading days. The in-sample data set covers from October 2, 2000 to April 29, 2015 and includes 
3803 observations, whereas the out-of-sample data set covers from April 30, 2015 to September 16, 2015 and 
incorporates 100 observations. 

4.1 Results of Models Estimated 

The first step is to identify the mean equation for the returns. The autocorrelation and partial autocorrelation of the 
returns are significant until the thirtieth lag. An autoregressive moving average ARMA(1, 1) is used as a mean equation 
to model volatility in the ARCH models. The estimated ARMA(1, 1) equation for the mean is found to be a significant 
t-value for the coefficients. The residuals of the mean equation indicate the absence of autocorrelation (Figures A7 and 
A8 in the Appendix).  

 

Table 2. Mean equation estimated 

 AR(1) ARMA(1,1) AR(2) ARMA(2,2) AR(3) AR(5) ARMA(5,5)

Log 
likelihood 

11529.53 11534.43 11520.69 11521.05 11518.02 11521.48 11522.95 

Cons 0.0001835 

(0.339) 

0.0001813 

(0.312) 

0.0001831 

(0.353) 

0.0001987 

(0.357) 

0.0001834 

(0.37) 

0.0001833 

(0.351) 

0.000183 

(0.357) 

AR -0.07678 

(0.000) 

0.55675 

(0.000) 

-0.03716 

(0.000) 

0.21745 

(0.256) 

0.003649 

(0.684) 

-0.4223 

(0.000) 

-0.6649 

(0.000) 

MA  -0.6332 

(0.000) 

 -0.25604 

(0.178) 

  0.0272 

(0.000) 

p-values are given in parentheses 

 
There is second-order dependence in the squared residuals of the mean equation and, hence, the presence of conditional 
heteroscedasticity in the returns (Figures A9 and A10 in the Appendix). Further, the ARCH-Lagrange Multiplier (LM) 
test confirm the presence of ARCH effects and the need to model this conditional heteroscedasticity using the ARCH 
family models (Table A6 in the Appendix). 
Table 3 presents the results of the models according to the data on returns. The outputs of EGARCH and TARCH on 
the returns show that the constant is not statistically significant in the mean equation. The ARMA(1, 1) term is also 
statistically significant for all models. The variance equation illustrates that all the terms are statistically significant at 
1% level of significance which implies that the volatility of risk is influenced by past square residual terms. It can be 
mentioned that the past volatility of the Russell 3000 index returns is significant, influencing the current volatility. The 
EGARCH variance equation also signifies that the asymmetric effect exists in volatility which means that positive 
shocks are affecting, volatility differently than negative on volatility. 
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We test for the presence of asymmetric effects. The sign bias test yields the following results : ߝ௧ଶ = 0.0001267 + 0.000065 ௧ܵିଵି +  ݎݎݎ݁

            p-value   (0.000)   (0.000) ߝ௧ଶ = 0.0001916 − 0.000065 ௧ܵିଵା +  ݎݎݎ݁

            p-value   (0.000)   (0.000) 

The presence of leverage effects are indicated by a positive and significant coefficient which implies the positive and 
negative shocks have a different effect on the conditional variance. Estimating the negative and positive sign bias tests 
yields the following results: ߝ௧ଶ = 0.0000988 − 0.0136777 ௧ܵିଵି ௧ିଵߝ +  ݎݎݎ݁

             p-value (0.000) (0.000) ߝ௧ଶ = 0.0001517 − 0.0018299 ௧ܵିଵା ௧ିଵߝ +  ݎݎݎ݁

             p-value (0.000) (0.091) 

Significant coefficients on both the negative and positive sign bias test implies that there are the sign effects and the 
size effects. Positive and negative shocks do have a different effect on the conditional variance and their effect on the 
variance depend on the size of the shocks. 

 
Table 3. Estimated coefficients for the ARCH models 

 ARCH(1) GARCH(1,1) EGARCH(1,1) PARCH(1,1) TARCH(1,1) 

Cons_ 0.0004654 

(0.000) 

0.0005402 

(0.000) 

-0.000545 

(0.131) 

0.0005211 

(0.000) 

0.0001399 

(0.277) 

AR(L1) 0.83549 

(0.000) 

0.7886943 

(0.000) 

0.9846177 

(0.000) 

0.7872327 

(0.000) 

0.565738 

(0.009) 

MA(L1) -0.90469 

(0.000) 

-0.8304443 

(0.000) 

-0.9642691 

(0.000) 

-0.8359881 

(0.000) 

-0.6043476 

(0.003) 

Variance equation 

Cons_ 0.000108 

(0.000) 

1.69 e-06 

(0.000) 

-0.0957891 

(0.000) 

1.13 e-08 

(0.000) 

1.52 e-06 

(0.000) 

ARCH(L1) 0.342212 

(0.000) 

0.086991 

(0.000) 

-0.1612393 

(0.000) 

0.0605926 

(0.000) 

0.1332451 

(0.000) 

GARCH(L1)  0.899946 

(0.000) 

0.9893511 

(0.000) 

0.8874245 

(0.000) 

0.9289033 

(0.000) 

Alpha   0.0624152 

(0.000) 

  

Power    3.063174 

(0.000) 

 

TARCH(L1)     -0.1531597 

(0.000) 

Likelihood 11760.73 12439.12 12527.24 12443.84 12530.03 

p-values are given in parentheses. 

 
Before making dynamic forecasts of volatility of the Russell 3000 index, the author analyses the statistical 
performance results of the selected models in the Table 4. The evolution of the Russell 3000 index (see Figure 1) 
allows us to highlight three identified “peak to peak” cycles during the period from October 2000 to September 2015 
(using Hodrick-Prescott Filter). We found two cycles for this period: October 2, 2000 to July 10, 2007 and July 10, 
2007 to September 16, 2015. For the first period, it reveals that the GARCH model has the lowest MAE at 0.0001219 
and the lowest MAPE at 526.5278. The EGARCH model has the lowest RMSE at 5.32 e-08. For the second period, we 
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maintain that the TARCH(1, 1) model is the best model which has the lowest MAE at 0.0001958 and the lowest RMSE 
at 3.07 e-07. And the same time, the GARCH model has the best MAPE at 7967.654. So, it can be said that all models 
except the ARCH and PARCH models are nominated as the best model in the case of the Russell 3000 index return 
series.  
Table 4. Statistical performance results for 2 cycles 

Model MAE MAPE RMSE 

 Period 1: October 2, 2000 to July 10, 2007 

ARCH(1) 0.0001537 1154.000 6.49 e-08 

GARCH(1,1) 0.0001219 526.5278 5.84 e-08 

EGARCH(1,1) 0.0001227 544.2675 5.32 e-08 

PARCH(1,1) 0.0001248 570.8318 5.77 e-08 

TARCH(1,1) 0.0001227 560.6118 5.30 e-08 

 Period 2: July 10, 2007 to September 16, 2015 

ARCH(1) 0.0002422 17773.75 4.42 e-07 

GARCH(1,1) 0.0002053 7967.654 3.36 e-07 

EGARCH(1,1) 0.0001958 8183.432 3.15 e-07 

PARCH(1,1) 0.0002109 8626.962 3.33 e-07 

TARCH(1,1) 0.0001958 7842.543 3.07 -07 

 

4.2 In-Sample Statistical Performance 

The in-sample data set covers from October 2, 2000 to April 29, 2015 and includes 3803 observations, whereas the 
out-of-sample data set covers from April 30, 2015 to September 16, 2015 and incorporates 100 observations. The 
following table presents the comparison of the in-sample statistical performance results of the selected models. It 
reveals that the EGARCH model has the lowest MAE at 0.0002353, the PARCH model has the lowest MAPE at 
3910.16 and the lowest RMSE at 6.23 e-07. So, it can be said that, based on the outputs of in-sample statistical 
performance the EGARCH and the PARCH models are the best models. The TARCH model has the worst MAE, 
MAPE and RMSE at 0.0004782, 14479.48 and 9.39 e-07 respectively. 

 

Table 5. In-sample statistical performance results  

Model MAE MAPE RMSE 

ARCH(1) 0.0002410 4757.677 6.49 e-07  

GARCH(1,1) 0.0002364 3910.164 6.32 e-07 

EGARCH(1,1) 0.0002353 4572.996 6.49 e-07 

PARCH(1,1) 0.0002362 3910.159 6.23 e-07 

TARCH(1,1) 0.0004782 14479.48 9.39 -07 

 
4.3 Out-of-Sample Statistical Performance 

After estimating the models, the next step is to evaluate their forecasts. The next 100 observations the volatility was 
forecasted by the dynamic models. Two of three evaluation statistics indicate that the TARCH(1, 1) model is best able 
to forecast volatility. It has the lowest MAPE at 485.6803 and the lowest RMSE at 2.18 e-07. Whereas the EGARCH(1, 
1) has the best MAE at 0.0001175. We can constate that there are not a lot of differences between the GARCH model 
and the PARCH model, but the ARCH(1) has the worst MAPE at 2142.469. 
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Table 6. Out of sample statistical performance results 

Model MAE MAPE RMSE 

ARCH(1) 0.0001428 2142.469 7.45 e-08 

GARCH(1,1) 0.0001217 1007.496 7.07 e-08 

EGARCH(1,1) 0.0001175 979.8507 6.83 e-08 

PARCH(1,1) 0.0001215 1003.461 6.86 e-08 

TARCH(1,1) 0.0003036 485.6803 2.18 e-07 

 
5.Conclusion and Discussion 

This study has aimed to model the Russell 3000 index return and assess the forecasting ability of the ARCH family of 
models. We have used historical volatility for modeling through the ARCH family of models and made dynamic 
forecasts of future volatility. The daily data from October 2, 2000 to September 16, 2015 is used in this study out of 
which, the in-sample data set covers from October 2, 2000 to April 29, 2015, whereas the out-of-sample data set covers 
from April 30, 2015 to September 16, 2015. 
Based on the results of the in-sample statistical performance, the EGARCH model and PARCH model perform best. 
Outcomes of the out-of-sample statistical performance demonstrate that the TARCH model and the EGARCH model 
are considered to be the best model. Those results confirm that the asymmetric effect and the symmetric specification 
such as ARCH or GARCH are not appropriate in this case. For our study, the best estimated model is EGARCH(1,1), 
and the best model to make dynamic forecasts of volatility is TARCH(1, 1).  
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Appendix: Tables 

Table A1. Summary statistics for Russell 3000 Index 

 Obs Mean Std. Dev. Skewness Kurtosis 

Russell 3000 3903 1400.60 364.51 0.9182 0.3007 

 

Table A2. Dickey-Fuller test for Russell 3000 index 

Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

-0.473 -3.430 -2.860 -2.570 0.8972 

 

Table A3. Phillips-Perron test for Russell 3000 index 

 Test statistic 1% critical value 5% critical value 10% critical value 

Z(rho) -0.449 -20.700 -14.100 -11.300 

Z(t) -0.190 -3.430 -2.860 -2.570 

MacKinnon approximate p-value for Z(t) = 0.9397 

 

Table A4. Dickey-Fuller test for returns 

Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

-67.483 -3.430 -2.860 -2.570 0.0000 

 

Table A5. Phillips-Perron test for returns 

 Test statistic 1% critical value 5% critical value 10% critical value 

Z(rho) -3908.622 -20.700 -14.100 -11.300 

Z(t) -68.085 -3.430 -2.860 -2.570 

MacKinnon approximate p-value for Z(t) = 0.0000 

 

Table A6. LM test for autoregressive conditional heteroscedasticity 

Lags(p) Chi² Df Prob. > Chi² 

1 143.203 1 0.0000 

H0: No ARCH effects vs. ARCH(p) disturbance 
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Figure A1. AC of Russell 3000 index                Figure A2. PAC of Russell 3000 index 

 

 

 

 

 

 

 

Figure A3. AC of squared returns              Figure A4. PAC of squared returns 

 

 

 

 

 

 

 

Figure A5. AC of Returns                   Figure A6. PAC of Returns 
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Figure A7. AC of res. mean equation              Figure A8. PAC of res. mean equation 

 

 

 

 

 

 

 

 

Figure A9. AC of res.² mean equation            Figure A10. PAC of res.² mean equation 


