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Abstract 

Is an autoregressive moving average model for the unobserved forward risk premium component always identifiable? 
Is the signal extraction-based approach always feasible? In this paper, we point out a theoretical framework to shed 
the light on the statistical problem of model identification. We find out that whenever a model for the unobservable 
forward risk premium is unidentifiable, we identify a new class of functions that we call: the noise generating 
functions (Hereafter NGF). These functions circumvent the model identification problem and help us make insights 
on the noise variances. We demonstrate that a model for the risk premium in the forward exchange rate is not always 
identifiable and the signal extraction methodology is not always feasible. In addition, our theoretical statements are 
applied to the empirically evidenced models within the related literature. 
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1. Introduction 

Not only do forward risk premia evoke much debate but also they are central to the theory in/of international finance. 
To make insights on modeling the forward risk premium component in the forward exchange rate is sine qua non for 
understanding its behavior and predicting it. In addition, the enlightenment of the labyrinthine clues of the forward 
premium puzzle (Note 1) makes easier the implementation of adequate policy tools for Central Banks. A huge body 
of the empirical literature has been documenting many forward risk premium component modeling approaches. In 
fact, continuous time vs discrete time models, linear vs nonlinear models, parametric vs nonparametric models, 
observed vs unobserved factor models, and regression-based vs signal extraction-based models have been performed. 
Engel (1996) surveyed several techniques of modeling and testing forward risk premium features such that the 
consumption capital asset pricing model, the latent variable model and portfolio-balance models. Diko, Lawford and 
Limpens (2006) investigated the presence of electricity forward risk premia in a continuous time framework and 
using an unobserved factor model. They adopted nonlinear and nonparametric estimation techniques. Bernoth, Von 
Hagen and De Vries (2010) performed an unobserved factor model to futures exchange rates. Fama (1984) 
implemented a regression-based approach where the forward risk premium is unobserved but it is explained via 
observed variables, however Wolff (1987) set up the signal extraction-based approach wherein the forward risk 
premium is modeled as an unobserved component. Also Cheung (1993) modeled risk premia in forward exchange 
rates as unobservables and pointed out a signal extraction modeling strategy. Bhar and Chiarella (2009) compared the 
signal extraction approach in continuous-time settings and discrete-time settings of forward risk premia. Rezessy 
(2010) applied three approaches from which the signal extraction approach and made a crosscheck based on them. 
Moreover, Cavaglia, Verschoor and Wolff (1994) pointed out, using a survey forecast data, a direct measurement of 
the forward risk premium and so it becomes observable. On the other hand, Bidarkota (2004) found out that the 
signal plus noise model failed to isolate statistically significant risk premium components from the noise. 
Furthermore, Jacobs (1982), Boyer and Adams (1988) and Bekaert and Hodrick (1993) shed the light on the 
measurement errors, model misspecifications and errors-in-variables problems whenever the regression-based 
approach is carried out. Gospodinov (2009) argued that the widely reported empirical literature of regressing the 
future exchange return on the current forward premium evidences several econometric limits that should be 
alleviated. In addition, Djeutem (2013) stated that the forward premium puzzle, in a context wherein agents doubt the 
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specification of their models, is explained by a model misspecification. 

Within the growing body of the empirical literature, when the financial researcher decides to handle with the forward 
premium anomaly, he has to choose between modeling the forward risk premium components as observables or 
unobservables. The former case is veracious if and only if we observe the conditional expectation of the future spot 
exchange rate. Indeed, Nijman, Palm and Wolff (1993) pointed out two conditions that must be satisfied to make the 
forward risk premium be an observed component. Once these two conditions are satisfied, the forward risk premium 
becomes observable and equals the forward premium. These conditions are: first, the spot exchange rate pursues a 
random walk stochastic process (Note 2) then the conditional appreciation/depreciation is equal to zero. Second, the 
semi-strong market efficiency (event studies) coincides with the weak-form market efficiency (tests for return 
forecastability) (Note 3). It is obvious that the required assumptions to get the forward risk premium observed are 
strongly restrictive. Thereby we dismiss this case. When we decide to model the forward exchange risk premium as 
unobservable, we have to choose between explaining it via observed variables and directly modeling it as 
unobservable. To study the time variation in premia and other features, we can set up either a regression-based 
modeling strategy or a signal-extraction modeling strategy. As mentioned by Wolff (1987), the regression-based 
approach has shortcomings and depends on the researcher's choice of dependent (endogenous) and independent 
(exogenous) variables. This arbitrariness is also dictated by the availability of the underlying data. On the other hand, 
the signal extraction-based approach circumvents the problem of arbitrariness of the traders'information set and it 
models the risk premium component as a whole, at the expense of identifying an exact econometric model for the 
signal. Thus, we alleviate the problem of modeling either the systematic risk or the individual relative risk aversion 
as a constant or a time-varying parameter. 

The pertaining related literature, which considers the forward risk premium as unobservable, does not precise 
whether the hypothesized model for the unobserved forward risk premium component is identifiable or not and does 
not analyse the case wherein the model is unidentifiable. Furthermore, the previous empirical literature did not 
emphasize the statistical problem of model identification. In this paper, we aim to answer the following questions: Is 
an autoregressive moving average (Hereafter ARMA) model for the unobserved forward risk premium component 
always identifiable? If not, what are the underlying implications? 

The remainder of the paper is organized as follows. Section 2 sets up the signal extraction preliminaries. Section 3 
points out general autoregressive (AR) and moving average (MA) order conditions for unobserved stochastic 
processes. Section 4 implements a theoretical framework. Section 5 apllies theoretical issues to previously evidenced 
models in the literature. Section 6 concludes. 

2. The Signal Extraction Preliminaries 

The signal extraction methodology emanates from the engineering branch. It consists of writing a model in a 
state-space form (SSF) and applying the Kalman Filter (KF). A SSF deals with two equations: a measurement 
equation and a transition or state equation. The measurement equation is also called the signal plus noise model. It 
involves an observed time-series as a sum of two unobserved components: the signal and the noise. The signal or the 
unobserved state variable is deemed as buried in the noisy environment. It is a kind of interference between the 
signal and the noise. Thus the former should be extracted from the latter. To do so, a state equation which describes 
the signal stochastic process has to be specified and a filtering algorithm has to be run. The KF aims to isolate the 
unobservable signal from the unobservable noise. The signal extraction methodology is as follws: (a) to identify an 
ARMA model for the observable time-series, (b) to make an assumption on the noise stochastic ARMA process, (c) 
to infer an ARMA model for the unobservable signal using Ansley, Spivey and Wrobleski (Hereafter ASW) (1977)'s 
summation theorem (Note 4) of moving average processes, (d) to derive a SSF, and (e) to set up the KF.   

2.1 The Signal plus Noise Model 

Our starting point is the Fama (1984)'s definition of the forward exchange rate: the forward foreign exchange rate at 
time t for a delivery at time t+1 is the market determined certainty equivalent (Note 5). Therefore, it is the sum of the 
Markowitz forward risk premium, at time t, and the conditional expectation, made at time t, of the future spot 
exchange rate at time t+1. It follows: 

௧݂,ଵ, ൌ ௧ܲ,ଵ,  ௧൯ (1)ߖ/൫ܵ௧ାଵ,ܧ

Where ௧݂,ଵ, is the ith forward exchange rate at time t for a delivery at time t+1, ௧ܲ,ଵ,  is the ith one-period 
unobservable forward risk premium and ܧ൫ܵ௧ାଵ,/ߖ௧൯ is the unobservable conditional expectation of the ith future 
spot exchange rate.	ߖ௧ is the information set on which we form the conditional expectation. Substracting the realized 
future spot exchange rate from both sides of equation (1), we get: 
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௧݂,ଵ, െ ܵ௧ାଵ, ൌ ௧ܲ,ଵ,  ௧൯ߖ/൫ܵ௧ାଵ,ܧ െ ܵ௧ାଵ, (2)

Let ௧݂,ଵ, െ ܵ௧ାଵ, ൌ  ௧ାଵ, be the forecast error of using the forward exchange rate as a predictor of the future spotݕ
exchange rate. ݕ௧ାଵ, can also be interpreted as the gross return corresponding to selling (buying) forward at time t a 
unit of the ith foreign currency for a delivery at time t+1 and buying (selling) spot at t+1. ݕ௧ାଵ, is observed at time 
t+1. Let ܧ൫ܵ௧ାଵ,/ߖ௧൯ െ ܵ௧ାଵ, ൌ  .௧ାଵ, be the forecast error due to information arrivals and market imperfectionsߝ
Rewriting equation (2), we get: 

௧ାଵ,ݕ ൌ ௧ܲ,ଵ,  ௧ାଵ, (3)ߝ

Only the left-hand side, of equation (3), is observable at time t+1. Both the forward risk premium,	 ௧ܲ,ଵ,, and the 
forecast error, ߝ௧ାଵ, , are unobservable but we only observe their sum. It can be easily seen that ߝ௧ାଵ, is a noise. 

௧ܲ,ଵ, is the fundamental signal buried in the noise ߝ௧ାଵ,. It is ipso facto deduced that equation (3) is the signal plus 
noise equation which is also called the measurement equation and it is the cornerstone of the structural form 
(Hereafter SF). The signal ௧ܲ,ଵ, is the state variable and it is unobserved. In fact, what we have is an observed 
model that is equal to the sum of two unobserved models. Let My be the observed, i.e. known, model relative to the 
observed time series. Let Msignal be the unobserved and unknown model for the signal. Let Mnoise be the unobserved 
and unknown model for the first source of noise. It follows that My = Msignal + Mnoise. Knowing the noise model is 
empirically sine qua non for the application of the ASW’s moving average summation theorem. Moreover, we will 
implement our framework according to ARMA-based modeling. 

Assumption 1: ARMA modeling is economically rational in the sense of Feige and Pearce (Note 6). 

Assumption 2: ൫ݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,൯ follows a causal-invertible ܣܯܴܣሺଵ, ଵሻݍ  model, ൫ ௧ܲ,ଵ,൯ follows a 
causal-invertible ܣܯܴܣሺଶ, ଶሻݍ  model, and ൫ߝ௧ାଵ,൯  follows a hypothetically known causal-invertible 
,ଷሺܣܯܴܣ  .ଷሻ model (Note 7). Common roots are not allowed to existݍ

Assumption 3: ൫ ௧ܲ,ଵ,൯ and ൫ߝ௧ାଵ,൯ have uncorrelated moving average structures (Note 8). 

According to assumption 2, we get: 

௧ାଵ,ݕሻܤ௬ሺߔ ൌ  ሻ߱௧ାଵ,ܤ௬ሺ߆ (4)

ሻܤሺߔ ௧ܲ,ଵ, ൌ  ሻܽ௧,ܤሺ߆ (5)

௧ାଵ,ߝሻܤఌሺߔ ൌ  ௧ାଵ,ߥሻܤఌሺ߆ (6)

Where ߔሺܤሻ and ߆ሺܤሻ are polynomials in B, the backward shift operator. ൫߱௧ାଵ,൯, ൫ܽ௧,൯ (Note 9) and ൫ߥ௧ାଵ,൯ 
are white noise processes. 

2.2 The Model Identification Problem 

Equation (4), called also the reduced form (Hereafter RF), is directly estimated given that ݕ௧ାଵ, is observable, so 
we identify ሺଵ, ොఠ,ߪ ,ଵሻ, the AR and/or MA coefficient estimates and the variance estimate of ߱௧ାଵ,ݍ

ଶ . Equation (6), 
given assumption 2, characterizes a white noise stochastic process, i.e.	ܣܯܴܣሺ0,0ሻ. As we have mentioned above, 
we will use the ASW’s moving average summation theorem to infer hypothetical models for the signal, ௧ܲ,ଵ,. In 
addition, the signal extraction via the KF is feasible if a SSF is derived and the latter is pointed out if an ARMA 
model for the signal is identifiable. Otherwise, the signal extraction-based approach is infeasible. The question is: 
when does a model identification problem arise? The model identification problem arises whenever one of the 
following items, at least, is not identified: (a) ሺଶ,  ଶሻ, (b) AR and/or MA coefficient(s) estimate(s) of theݍ
,ଶሺܣܯܴܣ ఌ,ߪ ,ଶሻ model, and (c) the variance of the first source of noiseݍ

ଶ  , and/or the variance of the second 
source of noise, ߪ,

ଶ . We say that there is no identification problem, and therefore the model is identifiable, if and 
only if all the items cited above are identifiable. If not, the model identification problem does exist. 

An intuitive thought is: how do we circumvent an eventual model identification problem? What should we do 
whether it happens? Nijman, Palm and Wolff (1993), in such a case, looked for upper and lower bounds for the 
unidentifiable variances ߪఌ,

ଶ  and ߪ,
ଶ . However, they considered a special case and did not generalize. We propose 

to point out a more general framework wherein we find out more generalized upper and lower bounds. 

If we evidence unidentifiable parameters, and so does the model for the unobservable signal, it is obvious that either 
an underdetermination or an overdetermination does matter. We will shed the light on those cases and their 
implications. 

3. General AR and MA Order Conditions for Unobserved Stochastic Processes 

In this section, we will set up the general AR and MA order conditions for the unobserved model for the signal. In 
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fact, we will answer the following question: knowing the stochastic process of the observable time series of the 
realized forecasting error of using the forward exchange rate as a predictor of the future spot exchange rate, i.e. 
ሺଵ, ,ଶଵሻ is known, what conditions should the signal AR and MA orders, ሺݍ  .?ଶሻ, verifyݍ

Proposition 1: Under assumptions 2 and 3 and using the ASW’s moving average summation theorem, we get 
ሺଶ, ଵ :ଶሻ such thatݍ ൌ ଵݍ ଶ and  ,ଶݍሺݔܽܯ  .ଵሻ

Proof: See Appendix 1. 

Corollary 1: ߔ௬ሺܤሻ ൌ  ሻܤሺߔ

Proof: See Appendix 1. 

Proposition 1 states the conditions that the hypothetical models for the unobserved forward risk premium must 
satisfy. Let ܪ be the set of inferred hypothetical models for the signal, we have: ܪ ൌ ሼܣܯܴܣሺଶ, ଵ/ଶሻݍ ൌ  and	ଶ
ଵݍ  ,ଶݍሺݔܽܯ ܪ ଵሻሽ. Obviously, the cardinality of  is greater or equal to one. Let M*P be the identifiable 
ଶሺܣܯܴܣ

,כ ଶݍ
 ሻ model for the signal. What are the existence conditions of M*P? And if it does exist, is it unique? Ifכ

the existence conditions are unsatisfied, what are the implications? 

An identifiable model does not mean a true model. The reader should keep in mind that the identification and the 
veracity of the model for the unobservable forward risk premium do not match. The identification is sine qua non for 
the implementation of the KF, however the true model may be unidentifiable. Thus, the class of unidentifiable 
models for the unobserved signal is our main topic and we will focus on it. 

4. ARMA(p1,q1) for the Observed Time Series and a White Noise Forecast Error  

For the observed time series, ൫ݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,൯, an ܣܯܴܣሺଵ,  ଵሻ is unique. The estimated equation (4)ݍ
points out the RF, while the equation (3) and the explicitely hypothesized model, via the ASW’s theorem, for the 
unobserved forward risk premium component point out the SF. Given the uniqueness of the ܣܯܴܣሺଵ,  ଵሻݍ
representation, the RF and SF associated to the observed time series, ൫ݕ௧ାଵ,൯, generate equal variances and k-order 
autocovariances. Let ߛ,ோி ൌ ௧ାଵ,ݕ൫ܧ

ଶ ൯ be the variance of ݕ௧ାଵ, from the RF and let ߛ,ௌி ൌ ௧ାଵ,ݕ൫ܧ
ଶ ൯ be the 

variance of ݕ௧ାଵ, from the SF. Let ߛ,ோி ൌ  ௧ାଵି,൯ be the k-order autocovariance from the RF and letݕ௧ାଵ,ݕ൫ܧ
,ௌிߛ ൌ ,ோிߛ ௧ାଵି,൯ be the k-order autocovariance from the SF (Note 10). It followsݕ௧ାଵ,ݕ൫ܧ ൌ  ,ௌி for allߛ
0  ݇  ,ଵሺݔܽܯ ,ଵሺݔܽܯ ଵሻ. Therefore, we getݍ ଵሻݍ  1 linearly independent equations (Note 11). On the other 
hand, it can be easily seen that the only unknown polynomial is ߆ሺܤሻ which consists of ݍଶ MA coefficients. 
Straightforwardly, we deduce that we get ݍଶ  2 unknowns to identify: ݍଶ MA coefficients and the noise variances, 
 .ଶߪ ఌଶ andߪ

Proposition 2: M*P  if and only if M*P א ଶݍ and ܪ
כ ൌ ,ଵሺݔܽܯ ଵሻݍ െ 1. 

Proof: See Appendix 2. 

Proposition 2 points out both the identification conditions and the uniqueness of M*P whenever these conditions hold. 
Otherwise, a model for the unobservable forward risk premium component is unidentifiable and we deal with either 
an underdetermination or an overdetermination. The model identification problem takes place whenever the 
well-known order condition is dissatisfied, i.e. the number of equations and the number of unknowns are unequal. 

Proposition 3: If MP א ଶݍ and ܪ ് ,ଵሺݔܽܯ ଵሻݍ െ 1 then we get, under appropriate conditions, the following two 
sub-cases: (a) ݍଶ  ,ଵሺݔܽܯ ଵሻݍ െ 1 so infinitely many solutions, and (b) ݍଶ ൏ ,ଵሺݔܽܯ ଵሻݍ െ 1 so no solutions. 

Proof: See Appendix 3. 

The proposition 3-b reflect an overdetermined system of equations, while proposition 3-a reflects an 
underdetermination on which we will focus. In fact, according to linear algebra, we can express in such a case of 
underdetermination, under given conditions, some variables as functions of the remaining ones. In our case, we will 
try to express noise variances, ߪఌ,

ଶ  and ߪ,
ଶ , as functions of the MA coefficients of the polynomial ߆ሺܤሻ. We will 

call those functions: the NGF. To do so is equivalent to finding out a relationship between the state of the exchange 
market noise trading, represented by the NGF, and the unknown MA signal coefficients. Moreover, the NGF will let 
us make inferences about the signal-to-noise ratio, i.e. the variance of the signal divided by the variance of the noise. 
The model identification problem lets us deal with hypothetical models for the forward risk premium, MP, which 
belong to a subset of ܪ ,ܪNGF, such that ܪNGF ൌ ሼܣܯܴܣሺଶ, ଵ/ଶሻݍ ൌ ଶ  and ݍଵ  ,ଶݍሺݔܽܯ ଶݍ ଵሻ and 
,ଵሺݔܽܯ ଵሻݍ െ 1ሽ. If MP ܪ אNGF, it gives rise to NGF.  

The moral of the story is whenever a model for the unobserved forward risk premium is unidentifiable and the 
proposition 3-a holds, we identify the so-called NGF. The latter must: (a) be positive, (b) converge, (c) be upwardly 
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and downwardly bounded, and (d) be a bijective function. 

Empirically, the observed time series, ൫ݕ௧ାଵ, ൌ ௧ܲ,ଵ,  ௧ାଵ,ߝ ൌ ௧݂,ଵ, െ ܵ௧ାଵ,൯ , can evidence an ܣܯܴܣሺଵ 
1, ଵݍ  1ሻ or a pure ܣܯሺݍଵ  1ሻ or a pure ܴܣሺଵ  1ሻ. It is pedagogically convenient to deal with the last two 
cases separately. 

4.1 The Case of a ܣܯሺݍଵ  1ሻ for the Observed Time Series and a White Noise Forecast Error 

Proposition 4: If ൫ݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,൯  follows an invertible MAሺqଵ  1ሻ  stochastic process and ൫ߝ௧ାଵ,൯ 
follows a white noise stochastic process then ൫ ௧ܲ,ଵ,൯ follows a hypothetically invertible MAሺqଶ  qଵሻ. 

Proof: See Appendix 4. 

Ipso facto, we deduce that M*P does not exist because we always get a number of unknowns greater than the number 
of equations, i.e. an underdetermined system of equations. Consequently, we have solely hypothetical models for the 
unobservable signal which belong to ܪ NGF. Neither the identifiable model nor the models causing an 
overdetermination exist. We can express the proposition 4 in the following table below. We easily show that 
whenever the observed time series follows an ܣܯܴܣሺଵ  1, ଵݍ  1ሻ such that ଵ ൏  ଵ, the identifiable modelݍ
does not exist too. 

Table 1. The existence of M*P and NGF 

Observed Model Hypothetical 

Models 

M*P NGF Overdetermination 

MAሺqଵ  1ሻ MAሺqଶ  qଵሻ Does not exist Does exist Does not exist 

 

In this case, the SSF is underived, and so does the KF. Therefore, Wolff (1987)'s estimation of the MAሺ1ሻ model is 
mathematically infeasible and is only a filtering approximation. As shown in Table 1 above, whenever the observed 
time series follows a pure moving average process, the signal extraction-based approach is infeasible. 

4.2 The Case of an ܴܣሺଵ  1ሻ for the Observed Time Series and a White Noise Forecast Error 

Proposition 5: If ൫ݕ௧ାଵ,൯ follows a causal ARሺpଵ  1ሻ stochastic process and ൫ߝ௧ାଵ,൯ follows a white noise 
stochastic process then ൫ ௧ܲ,ଵ,൯ follows a hypothetically causal-invertible ܴܣMAሺpଵ  1, qଶ  0ሻ. 

Proof: See Appendix 5. 

Table 2. The existence of M*P and NGF 

 pଵ ൌ 1 pଵ ൌ 2 pଵ  3 

ଶݍ ൌ pଵ െ ଶݍ 1 ൌ 0 so M*P ݍ ଶ ൌ 1 so M*P ݍ ଶ ൌ pଵ െ 1 so M*P  
ଶݍ  pଵ െ ଶݍ 1  0 so M*P  and NGF  ଶݍ  1 so M*P  and NGF  ଶݍ  pଵ െ 1 so M*P  and 

NGF  
ଶݍ ൏ pଵ െ ଶݍ 1 ൏ 0 absurd ݍଶ ൏ 1 ֥ ଶݍ ൌ 0 so neither 

M*P nor NGF 

ଶݍ ൏ pଵ െ 1 so pଵ െ 1 cases 

we get neither M*P nor NGF 

 

As shown in Table 2 above, whenever our aim is to apply the signal estraction-based approach, we have to 
hypothesize a model for the signal satisfying ݍଶ ൌ pଵ െ 1. Whenever we aim to point out the corresponding NGF, 
we undertake a hypothetical model for the signal verifying ݍଶ  pଵ െ 1 as our object of study. 

5. Empirical Issues 

5.1 Methodology 

Our methodology consists of three steps: (a) we consider the observed time series ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ , 
documented in the empirical literature, (b) we infer ܪ, and (c) we point out the eventual M*P, the eventual ܪேீி 
and whether the overdetermination case exists or not. 

We emphasize the study of the observed time series models which are reported in the empirical literature. Reviewing 
the empirically huge body of the related literature, we carry out the following recap in Table 3 below. 
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Table 3. Observable models in the related literature 

Author(s) Observable model for ሺݕ௧ାଵ, ൌ
௧݂,ଵ, െ ܵ௧ାଵ,ሻ 

The model for the forecast error 

Wolff (1987) ܴܣMAሺ1,1ሻ, ܴܣሺ1ሻ, and MAሺ1ሻ White noise 

Cheung (1993) ܴܣMAሺpଵ,  ;ଵሻݍሺpଵሻ, and MAሺܴܣ ,ଵሻݍ
pଵ, ଵݍ ൌ 1,2 

White noise 

Nijman, Palm, and Wolff (1993) ܴܣMAሺ1,1ሻ White noise 

Wolff (2000) ܴܣMAሺ1,1ሻ and MAሺ1ሻ. White noise 

Bidarkota (2004) ܴܣMAሺ1,1ሻ and ܴܣሺ1ሻ White noise 

Rezessy (2010) ܴܣMAሺ1,2ሻ MAሺ2ሻ 

Based on the underlying recapitulation above, we focus on each case and point out the corresponding NGF. 
Obviously, the cardinality of ܪNGF is greater than or equal to one. Thus, we will focus only on one model, for each 
case, leading to an underdetermination. 

5.2 The NGFand Their Implications 

For each previously cited empirical model, we highlight its corresponding NGF. The following Table 4 reports all 
observed models mentioned in Table 3 and gives for each one ܪ, M*P, ܪNGF, and hypothetical model(s) causing 
overdetermination. 

Table 4. Observable models and their corresponding ܪேீி 

Observable 
model for 
ሺݕ௧ାଵ, ൌ

௧݂,ଵ, െ ܵ௧ାଵ,ሻ 

 The set of hypothetical models :ܪ
for the signal 

M*P: The 
identifiable 

model for the 
signal  

 NGF: The set ofܪ
hypothetical models for 
the signal giving rise to 

NGF 

Hypothetical 
Model causing 
overdetermina

tion 

,ሺ1ܣܯܴܣMAሺ1,1ሻ ሼܴܣ ଶሻ/1ݍ  ,ଶݍሺݔܽܯ 1ሻሽ ܴܣሺ1ሻ ሼܣܯܴܣሺ1, ଶݍ/ଶሻݍ  1ሽ  

,ሺ1ܣܯܴܣMAሺ1,2ሻ ሼܴܣ ଶሻ/2ݍ  ,ଶݍሺݔܽܯ 1ሻሽ ,ሺ1ܣܯܴܣሼ  ଶݍ/ଶሻݍ  2ሽ  

,ሺ2ܣܯܴܣMAሺ2,1ሻ ሼܴܣ ଶሻ/1ݍ  ,ଶݍሺݔܽܯ 2ሻሽ ,ሺ2ܣܯܴܣMAሺ2,1ሻ ሼܴܣ ଶݍ/ଶሻݍ  2ሽ ܴܣሺ2ሻ 

,ሺ2ܣܯܴܣMAሺ2,2ሻ ሼܴܣ ଶሻ/2ݍ  ,ଶݍሺݔܽܯ 2ሻሽ ,ሺ2ܣܯܴܣMAሺ2,1ሻ ሼܴܣ ଶݍ/ଶሻݍ  2ሽ ܴܣሺ2ሻ 

,ሺ1ܣܯܴܣሺ1ሻ ሼܴܣ ଶሻ/0ݍ  ,ଶݍሺݔܽܯ 1ሻሽ ,ሺ1ܣܯܴܣሺ1ሻ ሼܴܣ ଶݍ/ଶሻݍ  1ሽ  

,ሺ2ܣܯܴܣሺ2ሻ ሼܴܣ ଶሻ/0ݍ  ,ଶݍሺݔܽܯ 2ሻሽ ,ሺ2ܣܯܴܣMAሺ2,1ሻ ሼܴܣ ଶݍ/ଶሻݍ  2ሽ ܴܣሺ2ሻ 

MAሺ1ሻ ሼܣܯሺݍଶሻ/1  ,ଶݍሺݔܽܯ 0ሻሽ  ሼܣܯሺݍଶሻ/ݍଶ  1ሽ  

MAሺ2ሻ ሼܣܯሺݍଶሻ/2  ,ଶݍሺݔܽܯ 0ሻሽ  ሼܣܯሺݍଶሻ/ݍଶ  2ሽ  

We will concentrate on three categories of ARMA models: mixed ARMA processes, pure AR processes, and pure 
MA processes for the observable time series, ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ. From each category, we will deal with two 
models. The rationale behind this choice is that each category will deal with two models leading to two systems of 
equations: a system with two equations and three unknowns and a system with three equations and four unknowns. 
Moreover, our choice encompasses the most evidenced models for the observed time series. 

 MAሺ1,1ሻ as a Hypothetical Model for the Signalܴܣ MAሺ1,1ሻ as an Observable Model andܴܣ 5.2.1

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable ܴܣMAሺ1,1ሻ model then we get the following RF: 

൫1 െ ߶௬,ܤ൯ݕ௧ାଵ, ൌ ൫1 െ ൯߱௧ାଵ, (Note 12) (7)ܤ௬,ߠ

The forward risk premium hypothetically follows an ܴܣMAሺ1,1ሻ model then we obtain the following SF: 

൫1 െ ߶௬,ܤ൯ݕ௧ାଵ, ൌ ൫1 െ ൯ܽ௧,ܤ,ߠ  ൫1 െ ߶௬,ܤ൯ߝ௧ାଵ, (8)

Now we calculate the unconditional variance and the first-order autocovariance for both the RF and SF and we get 
the following system of two equations and three unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ
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System: ൫ߠ,
ଶ െ 2߶௬,ߠ,  1൯ߪ,

ଶ  ൫1 െ ߶௬,
ଶ ൯ߪఌ,

ଶ ൌ ൫ߠ௬,
ଶ െ 2߶௬,ߠ௬,  1൯ߪොఠ,

ଶ  (9)

,ߪ,ߠ
ଶ  ߶௬,ߪఌ,

ଶ ൌ ොఠ,ߪ௬,ߠ
ଶ  (10)

The system above can be rewritten in a matrix form. We have: 

ܺఏು,. ேீிߑ ൌ ܸ  (11)

Where ܺఏು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏು, ൌ ቆ
,ߠ
ଶ െ 2߶௬,ߠ,  1 1 െ ߶௬,

ଶ

,ߠ ߶௬,
ቇ ேீிߑ	; ൌ ቆ

,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ ൌ ቆ

ܸଵ
ܸଶ
ቇ ൌ ቆ

൫ߠ௬,
ଶ െ 2߶௬,ߠ௬,  1൯ߪොఠ,

ଶ

ොఠ,ߪ௬,ߠ
ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (11) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏು, and the conditions, mentioned in section 4, the NGF have to satisfy. 

Proposition 6: ߠ, א ఏು,ܦ ൌ ௗ௧,ఏು,ܦ  ;,ఏು,ܦ ௗ௧,ఏು,ܦ ൌሿ െ 1, ߶௬,ሾሿ߶௬,, 1ሾ and ܦ,ఏು, ൌሿ െ 1, ,௬,ߠሿ௬,ሾߠ 1ሾ: 

We have: ݀݁ݐቀܺఏು,ቁ ൌ ݀థ,൫ߠ,൯ ൌ ߶௬,ߠ,
ଶ െ ൫1  ߶௬,

ଶ ൯ߠ,  ߶௬, ് 0 then we get: 

,൯ߠேீி൫ߑ ൌ ܺఏು,
ିଵ . ܸ ൌ

ۉ

ۈۈ
ۇ

,ߪ
ଶ ൫ߠ,൯ ൌ

መܣ

݀థ,൫ߠ,൯

ఌ,ߪ
ଶ ൫ߠ,൯ ൌ ොఠ,ߪ

ଶ
݄ఏ,൫ߠ,൯

݀థ,൫ߠ,൯ی

ۋۋ
ۊ
. 

Where ݄ఏ,൫ߠ,൯ ൌ ,ߠ௬,ߠ
ଶ െ ൫1  ,ߠ௬,൯ߠ  መܣ ௬, andߠ ൌ ߶௬, ܸଵ  ൫߶௬,

ଶ െ 1൯ ܸଶ. 

Proof: See Appendix 6. 

Proposition 7: Given that ߪ,
ଶ ൫ߠ,൯ and ߪఌ,

ଶ ൫ߠ,൯ have to be positive, we have: 

7-1: െ1 ൏ ௬,ߠ ൏ ߶௬, ൏ 0 and ߠ, א ఏು,ܦ ൌሿ െ 1,  .௬,ሾߠ

7-2: െ1 ൏ ߶௬, ൏ ௬,ߠ ൏ 0 or െ1 ൏ ߶௬, ൏ 0 ൏ ௬,ߠ ൏ 1 and ߠ, א ఏು,ܦ ൌሿߠ௬,, 1ሾ. 

7-3: 0 ൏ ௬,ߠ ൏ ߶௬, ൏ 1 or െ1 ൏ ௬,ߠ ൏ 0 ൏ ߶௬, ൏ 1 and ߠ, א ఏು,ܦ ൌሿ െ 1,  .௬,ሾߠ

7-4: 0 ൏ ߶௬, ൏ ௬,ߠ ൏ 1 and ߠ, א ఏು,ܦ ൌሿߠ௬,, 1ሾ. 

Proof: See Appendix 7. 

Proposition 8: The NGF converge and they are upwardly and downwardly bounded such that: 

መܣ :8-1  0 we have ߠ, ሿא െ 1,  :௬,ሾ and we get the following upper and lower boundsߠ

0 ൏ ఌ,ߪ
ଶ ൫ߠ,൯ ൏ ොఠ,ߪ

ଶ ൬
ଵାఏ,
ଵାథ,

൰
ଶ

; ൣ߶௬, ܸଵ  ൫߶௬,
ଶ െ 1൯ ܸଶ൧൫1  ߶௬,൯

ିଶ
൏ ,ߪ

ଶ ൫ߠ,൯ ൏ ොఠ,ߪ
ଶ . 

መܣ :8-2 ൏ 0 we have ߠ, ,௬,ߠሿא 1ሾ and we get the following upper and lower bounds: 

0 ൏ ఌ,ߪ
ଶ ൫ߠ,൯ ൏ ොఠ,ߪ

ଶ ൬
ଵିఏ,
ଵିథ,

൰
ଶ

; െൣ߶௬, ܸଵ  ൫߶௬,
ଶ െ 1൯ ܸଶ൧൫1 െ ߶௬,൯

ିଶ
൏ ,ߪ

ଶ ൫ߠ,൯ ൏ ොఠ,ߪ
ଶ . 

Proof: See Appendix 8. 

Empirically, the NGF will differ from a sample to another given that for each sample we get different values of the 
parameters ߶௬,, ߠ௬, and ߪොఠ,

ଶ . Although the NGF differ from a sample to another, they have to get the same 
fundamental characteristics as positiveness, convergence and bijection. In fact, the convergence of the NGF is a sine 
qua non condition for the forward foreign exchange market partial equilibrium. Namely, if the first source of noise, 
ఌ,ߪ
ଶ ൫ߠ,൯, is infinite, the demand as well as the supply function will be null and therefore the market mechanism will 

be truncated. Side by side, if the second source of noise, ߪ,
ଶ ൫ߠ,൯, does not converge, the variance of the forward 

risk premium component will consequently diverge, and so does the variance of the demand as well as the variance 
of the supply. In spite the unidentified noise variances, we have identified upper and lower bounds that do not depend 
on the unknown parameter ߠ,, We have identified boudaries in a general ܴܣMAሺ1,1ሻ framework and the NGF 
converge for all ߠ, א ,ߪ ,ఏು, and therefore the unconditional unobserved forward risk premium varianceܦ

ଶ ൫ߠ,൯, 
as well as the unconditional observed variance will converge. Furthermore, the noise variances are of opposite 
variation. A plausible question arises from the fact that the NGF covary in opposite directions: how do the signal 
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variance and the first source of noise variance covary? It is easily shown that they negatively covary. From an 
empirical point of view, if one is willing to vary the unknown MA coefficient ߠ, in order to minimize the signal 
variance, he should take into account that the noise variance, ߪఌ,

ଶ ൫ߠ,൯, will rise and vice versa. Indeed, the signal 
variance and the second source of noise variance, ߪ,

ଶ ൫ߠ,൯, covary in the same direction with respect to the 
unknown MA coefficient ߠ,. It is essential to focus on the signal-to-noise ratio, the signal variance over the first 
source of noise variance, and to deepen insights on. In fact, if the underlying ratio is greater than one then more (less) 
than half of the time variation in forward exchange rates is explained by the time variation in forward risk premia 
components (by the time variation in noise). Otherwise, less (more) than half of the time variation in forward 
exchange rates is explained by the time variation in forward risk premia components (by the time variation in noise). 
The signal-to-noise ratio is of most importance within the signal extraction analysis. It sheds the light on the 
explanation of the time variation in the context of a signal plus noise model. This can be helpful when one is willing 
to simulate the unknown MA coefficient ߠ,. Another important ratio in the signal extraction-based approach is the 
second source of noise variance over the signal variance. It conveys us the information whether the time variation in 
the signal emanates essentially from the random components or not. In fact, if the ratio is greater than one half then 
more than half of the time variation in the signal is of a random nature. Otherwise, more than or exactly half of the 
time variation in the forward risk premia components emanates essentially from the systematic components. 

Proposition 9: 

,ߠ :9-1 ሿ߶௬,א െ ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ, we get a ratio greater than .5. 

,ߠ :9-2 ሿ߶௬,ב െ ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ, we get a ratio less than one .5. 

,ߠ :9-3 ൌ ߶௬, െ ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
 or ߠ, ൌ ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ

, we get a ratio equal to .5. 

Proof: See Appendix 9. 

Then we can base simulations on values taken by this ratio with respect to 1/2. The simulations could be based upon 
prior informations concerning either the coefficient ߠ, or the state of noise trading (ߪఌ,

ଶ ,ߪ
ଶ ). 

 MAሺ2,2ሻ as a Hypothetical Model for the Signalܴܣ MAሺ2,2ሻ as an Observable Model andܴܣ 5.2.2

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable ܴܣMAሺ2,2ሻ model then we get the following RF: 

൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ݕ௧ାଵ, ൌ ൫1 െ ܤଵ,௬,ߠ െ ଶ൯߱௧ାଵ, (12)ܤଶ,௬,ߠ

The forward risk premium hypothetically follows an ܴܣMAሺ2,2ሻ model then we obtain the following SF: 

൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ݕ௧ାଵ, ൌ ൫1 െ ܤଵ,,ߠ െ ଶ൯ܽ௧,ܤଶ,,ߠ  ൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ߝ௧ାଵ, (13)

Now we calculate the unconditional variance, the first-order and second-order autocovariances for both the RF and 
SF and we get the following system of three equations and four unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ

ଶ,ௌிߛ ൌ  ଶ,ோிߛ

System: ݃థభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ߠ
ଶ  ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯ߪఌ,

ଶ ൌ ොఠ,ߪመܣ
ଶ  (14)

 ݆థభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ߠ
ଶ െ ߶ଵ,௬,߶ଶ,௬,ߪఌ,

ଶ ൌ ොఠ,ߪܤ
ଶ  (15)

 ݈థభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ߠ
ଶ ൌ ොఠ,ߪመܥ

ଶ  (16)

Where: 

݃థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ൌ ൫ߠଵ,, െ ߶ଵ,௬,൯
ଶ
 ൫ߠଶ,, െ ߶ଶ,௬,൯

ଶ
 2߶ଵ,௬,ߠଶ,,൫ߠଵ,, െ ߶ଵ,௬,൯  ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯ , 

݆థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ൌ ൫ߠଵ,, െ ߶ଵ,௬,൯ൣ߶ଵ,௬,ߠଵ,,  ଶ,,൫1ߠ  ߶ଵ,௬,
ଶ  ߶ଶ,௬,൯ െ 1൧  ߶ଵ,௬,ߠଶ,,൫ߠଶ,, െ
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߶ଶ,௬,൯ െ ߶ଶ,௬,ߠଵ,, , ݈థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ൌ ൣ߶ଵ,௬,൫ߠଵ,, െ ߶ଵ,௬,൯  ൫ߠଶ,, െ ߶ଶ,௬,൯൧ൣ߶ଶ,௬,ߠଶ,,  ߶ଵ,௬,ߠଵ,, 

߶ଵ,௬,
ଶ ଶ,,ߠ െ 1൧  ൫ߠଵ,, െ ߶ଵ,௬,൯൫߶ଶ,௬,ߠଵ,,  ߶ଵ,௬,߶ଶ,௬,ߠଶ,,൯ መܣ ,  ൌ ݃థభ,,;థమ,,൫ߠଵ,, ൌ ,ଵ,௬,ߠ ଶ,,ߠ ൌ ଶ,௬,൯ߠ , 

ܤ ൌ ݆థభ,,;థమ,,൫ߠଵ,, ൌ ,ଵ,௬,ߠ ଶ,,ߠ ൌ መܥ ଶ,௬,൯, andߠ ൌ ݈థభ,,;థమ,,൫ߠଵ,, ൌ ,ଵ,௬,ߠ ଶ,,ߠ ൌ  .ଶ,௬,൯ߠ

The system of equations (14), (15), and (16) can be rewritten as follows: 

System: ݃థభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ߠ
ଶ  ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯ߪఌ,

ଶ ൌ ොఠ,ߪመܣ
ଶ  (17)

 ሾ݆థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ  ݈థభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ሿߠ
ଶ െ ߶ଵ,௬,߶ଶ,௬,ߪఌ,

ଶ ൌ ሺܤ  ොఠ,ߪመሻܥ
ଶ  (18)

The system of equations (17) and (18) can be rewritten in a matrix form. We have: 

ܺఏభ,ು,,ఏమ,ು, . ேீிߑ ൌ ܸ  (19)

Where ܺఏభ,ು,,ఏమ,ು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏభ,ು,,ఏమ,ು, ൌ ൭
݃థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯

݆థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ  ݈థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ െ߶ଵ,௬,߶ଶ,௬,
൱ ேீிߑ	; ൌ ቆ

,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ

ൌ ቆ
ܸଵ
ܸଶ
ቇ ൌ ቆ

ොఠ,ߪመܣ
ଶ

ሺܤ  ොఠ,ߪመሻܥ
ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (19) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏభ,ು,,ఏమ,ು, and the conditions the NGF have to satisfy. 

Proposition 10: ݐ݁݀ቀܺఏభ,ು,,ఏమ,ು,ቁ ൌ ݀థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ് 0, ܺఏభ,ು,,ఏమ,ು, is nonsingular and NGF , we get : 

,ଵ,,ߠேீி൫ߑ ଶ,,൯ߠ ൌ ܺఏభ,ು,,ఏమ,ು,
ିଵ . ܸ ൌ

ۉ

ۈۈ
ۇ

,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ିቂథభ,,థమ,,ାሺାመሻቀଵିథభ,,
మ ିథమ,,

మ ቁቃఙෝഘ,
మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯

ఌ,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ି൭ഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ାഝభ,,;ഝమ,,

൫ఏభ,ು,,ఏమ,ು,൯൱ାሺାመሻഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯൩ఙෝഘ,

మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ ی

ۋۋ
ۊ

.    

Proof: See Appendix 10. 

The NGF have to be positive because they are variances. Thus it follows that the domain on which we define our 
NGF is the following: 

ேீிܦ ൌ ሼ൫ߠଵ,,, ଶ,,൯ߠ ሿא െ 1,1ሾൈሿ െ 1,1ሾ/݀థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ് 0  and െൣܣመ߶ଵ,௬,߶ଶ,௬,  ൫ܤ  መ൯൫1ܥ െ

߶ଵ,௬,
ଶ െ ߶ଶ,௬,

ଶ ൯൧, ቂെܣመ ൬݆థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ  ݈థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯൰ߠ  ሺܤ  ,ଵ,,ߠመሻ݃థభ,,;థమ,,൫ܥ  ଶ,,൯ቃ andߠ

,ଵ,,ߠథభ,,;థమ,,൫ݖ  .{ଶ,,൯ have the same signߠ

In addition, we easily show that the noise variances are upwardly bounded and the upper bounds are the maxima of 
the corresponding functions (Note 13). Furthermore, whenever we deal with an underdetermined system of equations, 
involving more than two equations, we reduce it to an equivalent system dealing with two equations as done above. 

 MAሺ1,1ሻ as a Hypothetical Model for the Signalܴܣ ሺ1ሻ as an Observable Model andܴܣ 5.2.3

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable ܴܣሺ1ሻ model then we get the following RF: 

൫1 െ ߶௬,ܤ൯ݕ௧ାଵ, ൌ ߱௧ାଵ, (20)

The forward risk premium hypothetically follows an ܴܣMAሺ1,1ሻ model then we obtain the following SF: 
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൫1 െ ߶௬,ܤ൯ݕ௧ାଵ, ൌ ൫1 െ ൯ܽ௧,ܤ,ߠ  ൫1 െ ߶௬,ܤ൯ߝ௧ାଵ, (21)

Now we calculate the unconditional variance and the first-order autocovariance for both the RF and SF and we get 
the following system of two equations and three unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ

System: ൫ߠ,
ଶ െ 2߶௬,ߠ,  1൯ߪ,

ଶ  ൫1 െ ߶௬,
ଶ ൯ߪఌ,

ଶ ൌ ොఠ,ߪ
ଶ  (22)

 ൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯ߪ,
ଶ ൌ ߶௬,ߪොఠ,

ଶ  (23)

The system above can be rewritten in a matrix form. We have: 

ܺఏು,. ேீிߑ ൌ ܸ  (24)

Where ܺఏು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏು, ൌ ቆ
,ߠ
ଶ െ 2߶௬,ߠ,  1 1 െ ߶௬,

ଶ

൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯ 0
ቇ ேீிߑ	; ൌ ቆ

,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ ൌ ቆ

ܸଵ
ܸଶ
ቇ ൌ ቆ

ොఠ,ߪ
ଶ

߶௬,ߪොఠ,
ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (24) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏು, and the conditions the NGF have to satisfy. 

Proposition 11: ߠ, ሿא െ 1,1ሾ\ሼ߶௬,ሽ, ܺఏು, is nonsingular and NGF , we get ߑேீி൫ߠ,൯ ൌ ܺఏು,
ିଵ . ܸ : 

,൯ߠேீி൫ߑ ൌ ൮

,ߪ
ଶ ൫ߠ,൯ ൌ ߶௬,ൣ൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯൧

ିଵ
ොఠ,ߪ
ଶ

ఌ,ߪ
ଶ ൫ߠ,൯ ൌ ൣ൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯൧

ିଵ
െ ቈ

థ,൫ఏು,
మ ିଶథ,ఏು,ାଵ൯

ቀଵିథ,
మ ቁ൫థ,ିఏು,൯൫ଵିథ,ఏು,൯

൩ ොఠ,ߪ
ଶ
൲. 

Proof: See Appendix 11. 

The domain on which we define our NGF is the following: 

ேீிܦ ൌ ሼߠ, ሿא െ 1,1ሾ\ሼ߶௬,ሽ/߶௬,ൣ൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯൧
ିଵ
 0  and ൣ൫߶௬, െ ,൯൫1ߠ െ ߶௬,ߠ,൯൧

ିଵ
െ

ቈ
థ,൫ఏು,

మ ିଶథ,ఏು,ାଵ൯

ቀଵିథ,
మ ቁ൫థ,ିఏು,൯൫ଵିథ,ఏು,൯

  0ሽ. 

The same reasoning, as in section 5.2.1, is applied for the positiveness of the NGF, the convergence, the 
determination of upper and lower bounds and the significantly useful signal-to-noise ratios. 

 MAሺ2,2ሻ as a Hypothetical Model for the Signalܴܣ ሺ2ሻ as an Observable Model andܴܣ 5.2.4

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable ܴܣሺ2ሻ model then we get the following RF: 

൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ݕ௧ାଵ, ൌ ߱௧ାଵ, (25)

The forward risk premium hypothetically follows an ܴܣMAሺ2,2ሻ model then we obtain the following SF: 

൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ݕ௧ାଵ, ൌ ൫1 െ ܤଵ,,ߠ െ ଶ൯ܽ௧,ܤଶ,,ߠ  ൫1 െ ߶ଵ,௬,ܤ െ ߶ଶ,௬,ܤଶ൯ߝ௧ାଵ, (26)

Now we calculate the unconditional variance, the first-order and second-order autocovariances for both the RF and 
SF and we get the following system of three equations and four unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ

ଶ,ௌிߛ ൌ  ଶ,ோிߛ

System: 
,ଵ,,ߠథభ,,;థమ,,൫ݔ ,ߪଶ,,൯ߠ

ଶ  ൫1 െ ߶ଵ,௬,
ଶ െ ߶ଶ,௬,

ଶ ൯ߪఌ,
ଶ ൌ ොఠ,ߪ

ଶ  
(27)

 
,ଵ,,ߠథభ,,;థమ,,൫ݕ ,ߪଶ,,൯ߠ

ଶ െ ߶ଵ,௬,߶ଶ,௬,ߪఌ,
ଶ ൌ ߶ଵ,௬,ߪොఠ,

ଶ  
(28)
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,ଵ,,ߠథభ,,;థమ,,൫ݖ ,ߪଶ,,൯ߠ

ଶ ൌ ൫߶ଵ,௬,
ଶ  ߶ଶ,௬,൯ߪොఠ,

ଶ  
(29)

Where ݔథభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ൌ ቂ1  ଵ,,ߠ
ଶ  ଶ,,ߠ

ଶ െ 2ൣ߶ଵ,௬,ߠଵ,,  ߶ଶ,௬,ߠଶ,,  ߶ଵ,௬,ߠଶ,,൫߶ଵ,௬, െ ଵ,,൯൧ቃߠ , 

,ଵ,,ߠథభ,,;థమ,,൫ݕ ଶ,,൯ߠ ൌ

ൣ൫߶ଵ,௬, െ ଵ,,൯ൣ1ߠ െ ߶ଵ,௬,ߠଵ,, െ ଶ,,൫1ߠ  ߶ଵ,௬,
ଶ  ߶ଶ,௬,൯൧ െ ߶ଶ,௬,ߠଵ,, െ ߶ଵ,௬,ߠଶ,,൫߶ଶ,௬, െ ଶ,,൯൧ߠ , and 

,ଵ,,ߠథభ,,;థమ,,൫ݖ ଶ,,൯ߠ ൌ

ቂ൫߶ଵ,௬, െ ଵ,,൯൫߶ଵ,௬,ߠ െ ߶ଶ,௬,ߠଵ,, െ ߶ଵ,௬,߶ଶ,௬,ߠଶ,,൯  ൫߶ଶ,௬, െ ଶ,,൯ߠ െ

൫߶ଵ,௬,ߠଵ,,  ߶ଶ,௬,ߠଶ,,  ߶ଵ,௬,
ଶ ଶ,,൯ൣ߶ଵ,௬,൫߶ଵ,௬,ߠ െ ଵ,,൯ߠ  ൫߶ଶ,௬, െ  .ଶ,,൯൧ቃߠ

The system of equations (27), (28), and (29) can be rewritten as follows: 

System: ݔథభ,,;థమ,,൫ߠଵ,,, ,ߪଶ,,൯ߠ
ଶ  ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯ߪఌ,

ଶ ൌ ොఠ,ߪ
ଶ  (30)

 
ሾݕథభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ  ,ଵ,,ߠథభ,,;థమ,,൫ݖ ,ߪଶ,,൯ሿߠ

ଶ െ ߶ଵ,௬,߶ଶ,௬,ߪఌ,
ଶ

ൌ ൫߶ଵ,௬,  ߶ଵ,௬,
ଶ  ߶ଶ,௬,൯ߪොఠ,

ଶ  (31)

The system of equations (30) and (31) can be rewritten in a matrix form. We have: 

ܺఏభ,ು,,ఏమ,ು, . ேீிߑ ൌ ܸ  (32)

Where ܺఏభ,ು,,ఏమ,ು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏభ,ು,,ఏమ,ು, ൌ ൭
,ଵ,,ߠథభ,,;థమ,,൫ݔ ଶ,,൯ߠ ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯

,ଵ,,ߠథభ,,;థమ,,൫ݕ ଶ,,൯ߠ  ,ଵ,,ߠథభ,,;థమ,,൫ݖ ଶ,,൯ߠ െ߶ଵ,௬,߶ଶ,௬,
൱ ேீிߑ	; ൌ ቆ

,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ

ൌ ቆ
ܸଵ
ܸଶ
ቇ ൌ ቆ

ොఠ,ߪ
ଶ

൫߶ଵ,௬,  ߶ଵ,௬,
ଶ  ߶ଶ,௬,൯ߪොఠ,

ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (32) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏು, and the conditions the NGF have to satisfy. 

Proposition 12: ݐ݁݀ቀܺఏభ,ು,,ఏమ,ು,ቁ ൌ ݀థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ് 0, ܺఏభ,ು,,ఏమ,ು, is nonsingular and NGF , we get: 

,ଵ,,ߠேீி൫ߑ ଶ,,൯ߠ ൌ ܺఏభ,ು,,ఏమ,ು,
ିଵ . ܸ ൌ

ۉ

ۈ
ۇ

,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ିቂథభ,,థమ,,ାቀଵିథభ,,
మ ିథమ,,

మ ቁቀథభ,,ାథభ,,
మ ାథమ,,ቁቃఙෝഘ,

మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯

ఌ,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ି௬ഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ି௭ഝభ,,;ഝమ,,

൫ఏభ,ು,,ఏమ,ು,൯ା௫ഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ቀథభ,,ାథభ,,

మ ାథమ,,ቁ൨ఙෝഘ,
మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ ی

ۋ
ۊ

. 

Proof: See Appendix 12. 

The NGF have to be positive because they are variances. Thus it follows that the domain on which we define our 
NGF is the following: 

ேீிܦ ൌ ሼ൫ߠଵ,,, ଶ,,൯ߠ ሿא െ 1,1ሾൈሿ െ 1,1ሾ/݀థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ് 0  and ߪ,
ଶ ൫ߠଵ,,, ଶ,,൯ߠ  0  and 

ఌ,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ  0}. 

In addition, we can easily show that the noise variances are upwardly bounded and the upper bounds are the maxima 
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of the corresponding functions. Furthermore, whenever we deal with an underdetermined system of equations, 
involving more than two equations, we reduce it to an equivalent system dealing with two equations as done above. 

5.2.5 MAሺ1ሻ as an Observable Model and MAሺ1ሻ as a Hypothetical Model for the Signal 

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable MAሺ1ሻ model then we get the following RF: 

௧ାଵ,ݕ ൌ ൫1 െ ൯߱௧ାଵ, (33)ܤ௬,ߠ

The forward risk premium hypothetically follows a MAሺ1ሻ model then we obtain the following SF: 

௧ାଵ,ݕ ൌ ൫1 െ ൯ܽ௧,ܤ,ߠ  ௧ାଵ, (34)ߝ

Now we calculate the unconditional variance and the first-order autocovariance for both the RF and SF and we get 
the following system of two equations and three unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ

System: ൫1  ,ߠ
ଶ ൯ߪ,

ଶ  ఌ,ߪ
ଶ ൌ ൫1  ௬,ߠ

ଶ ൯ߪොఠ,
ଶ  (35)

,ߪ,ߠ 
ଶ ൌ ොఠ,ߪ௬,ߠ

ଶ  (36)

The system above can be rewritten in a matrix form. We have: 

ܺఏು,. ேீிߑ ൌ ܸ  (37)

Where ܺఏು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏು, ൌ ቆ
1  ,ߠ

ଶ 1
,ߠ 0

ቇ ேீிߑ	; ൌ ቆ
,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ ൌ ቆ

ܸଵ
ܸଶ
ቇ ൌ ቆ

൫1  ௬,ߠ
ଶ ൯ߪොఠ,

ଶ

ොఠ,ߪ௬,ߠ
ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (37) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏು, and the conditions the NGF have to satisfy. 

Proposition 13: ߠ, ሿא െ 1,1ሾ\ሼ0ሽ, ܺఏು, is nonsingular and NGF , we get: 

,൯ߠேீி൫ߑ ൌ ܺఏು,
ିଵ . ܸ ൌ ቌ

,ߪ
ଶ ൫ߠ,൯ ൌ ොఠ,ߪ௬,ߠ

ଶ ,ߠ
ିଵ

ఌ,ߪ
ଶ ൫ߠ,൯ ൌ 1  ௬,ߠ

ଶ െ ௬,ߠ ൬
ଵାఏು,

మ

ఏು,
൰൨ ොఠ,ߪ

ଶ ቍ. 

Proof: See Appendix 13. 

The domain on which we define our NGF is the following: 

ேீிܦ ൌ ሼߠ, ሿא െ 1,1ሾ\ሼ0ሽ/ߠ௬,ߪොఠ,
ଶ ,ߠ

ିଵ  0 and 1  ௬,ߠ
ଶ െ ௬,ߠ ൬

ଵାఏು,
మ

ఏು,
൰൨  0ሽ. 

The same reasoning, as in section 5.2.1, is applied for the positiveness of the NGF, the convergence, the 
determination of upper and lower bounds and the significantly useful signal-to-noise ratios. 

5.2.6 MAሺ2ሻ as an Observable Model and MAሺ2ሻ as a Hypothetical Model for the Signal 

ሺݕ௧ାଵ, ൌ ௧݂,ଵ, െ ܵ௧ାଵ,ሻ follows an observable MAሺ2ሻ model then we get the following RF: 

௧ାଵ,ݕ ൌ ൫1 െ ܤଵ,௬,ߠ െ ଶ൯߱௧ାଵ, (38)ܤଶ,௬,ߠ

The forward risk premium hypothetically follows a MAሺ2ሻ model then we obtain the following SF: 

௧ାଵ,ݕ ൌ ൫1 െ ܤଵ,,ߠ െ ଶ൯ܽ௧,ܤଶ,,ߠ  ௧ାଵ, (39)ߝ

Now we calculate the unconditional variance, the first-order and second-order autocovariances for both the RF and 
SF and we get the following system of three equations and four unknowns: 

System: ߛ,ௌி ൌ  ,ோிߛ

ଵ,ௌிߛ ൌ  ଵ,ோிߛ

ଶ,ௌிߛ ൌ  ଶ,ோிߛ

System: ൫1  ଵ,,ߠ
ଶ  ଶ,,ߠ

ଶ ൯ߪ,
ଶ  ఌ,ߪ

ଶ ൌ ൫1  ଵ,௬,ߠ
ଶ  ଶ,௬,ߠ

ଶ ൯ߪොఠ,
ଶ  (40)

ଵ,,൫1ߠ  െ ,ߪଶ,,൯ߠ
ଶ ൌ ଵ,௬,൫1ߠ െ ොఠ,ߪଶ,௬,൯ߠ

ଶ  (41)
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,ߪଶ,,ߠ 
ଶ ൌ ොఠ,ߪଶ,௬,ߠ

ଶ  (42)

The system of equations (40), (41), and (42) can be rewritten as follows: 

System: ൫1  ଵ,,ߠ
ଶ  ଶ,,ߠ

ଶ ൯ߪ,
ଶ  ఌ,ߪ

ଶ ൌ ൫1  ଵ,௬,ߠ
ଶ  ଶ,௬,ߠ

ଶ ൯ߪොఠ,
ଶ  (43)

ଵ,,൫1ߠൣ  െ ଶ,,൯ߠ  ,ߪଶ,,൧ߠ
ଶ ൌ ଵ,௬,൫1ߠൣ െ ଶ,௬,൯ߠ  ොఠ,ߪଶ,௬,൧ߠ

ଶ  (44)

The system of equations (43) and (44) can be rewritten in a matrix form. We get: 

ܺఏభ,ು,,ఏమ,ು, . ேீிߑ ൌ ܸ  (45)

Where ܺఏభ,ು,,ఏమ,ು, is a 2x2 matrix, ߑேீி is the 2x1 NGF vector, and ܸ  is a known 2x1 vector such that: 

ܺఏభ,ು,,ఏమ,ು, ൌ ቆ
1  ଵ,,ߠ

ଶ  ଶ,,ߠ
ଶ 1

ଵ,,൫1ߠ െ ଶ,,൯ߠ  ଶ,,ߠ 0
ቇ ேீிߑ	; ൌ ቆ

,ߪ
ଶ

ఌ,ߪ
ଶ ቇ 	ܽ݊݀	 ܸ ൌ ቆ

ܸଵ
ܸଶ
ቇ ൌ ቆ

൫1  ଵ,௬,ߠ
ଶ  ଶ,௬,ߠ

ଶ ൯ߪොఠ,
ଶ

ଵ,௬,൫1ߠൣ െ ଶ,௬,൯ߠ  ොఠ,ߪଶ,௬,൧ߠ
ଶ ቇ. 

Pointing out the corresponding NGF is equivalent to solving equation (45) in ߑNGF. In fact, the eventual solution 
depends on the invertibility of the matrix ܺఏభ,ು,,ఏమ,ು, and the conditions the NGF have to satisfy. 

Proposition 14: ൫ߠଵ,,, ଶ,,൯ߠ ሿא െ 1,1ሾൈሿ െ 1,1ሾ/ߠଵ,, ് െ
ఏమ,ು,

ଵିఏమ,ು,
 or ߠଶ,, ് െ

ఏభ,ು,
ଵିఏభ,ು,

, ܺఏభ,ು,,ఏమ,ು, is invertible 

and NGF , we get: 

,ଵ,,ߠேீி൫ߑ ଶ,,൯ߠ ൌ ܺఏభ,ು,,ఏమ,ು,
ିଵ . ܸ ൌ

൮
,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ ଵ,,൫1ߠൣ െ ଶ,,൯ߠ  ଶ,,൧ߠ

ିଵ
ଵ,௬,൫1ߠൣ െ ଶ,௬,൯ߠ  ොఠ,ߪଶ,௬,൧ߠ

ଶ

ఌ,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ ቈ൫1  ଵ,௬,ߠ

ଶ  ଶ,௬,ߠ
ଶ ൯ െ 

൫ଵାఏభ,ು,
మ ାఏమ,ು,

మ ൯ൣఏభ,,൫ଵିఏమ,,൯ାఏమ,,൧

ఏభ,ು,൫ଵିఏమ,ು,൯ାఏమ,ು,
൨ ොఠ,ߪ

ଶ
൲. 

Proof: See Appendix 14. 

ேீிܦ ൌ ሼ൫ߠଵ,,, ଶ,,൯ߠ ሿא െ 1,1ሾൈሿ െ 1,1ሾ/ߠଵ,, ് െ
ఏమ,ು,

ଵିఏమ,ು,
 or ߠଶ,, ് െ

ఏభ,ು,
ଵିఏభ,ು,

 and ൫1  ଵ,௬,ߠ
ଶ  ଶ,௬,ߠ

ଶ ൯ 


൫ଵାఏభ,ು,

మ ାఏమ,ು,
మ ൯ൣఏభ,,൫ଵିఏమ,,൯ାఏమ,,൧

ఏభ,ು,൫ଵିఏమ,ು,൯ାఏమ,ು,
൨ሽ. 

The same reasoning, as in section 5.2.2 and 5.2.4, is applied for the positiveness of the NGF, the convergence, the 
determination of upper and lower bounds and the significantly useful signal-to-noise ratios. 

6. Conclusion 

Not for nothing do we pinpoint the underlying topic. Our paper proposes a synthesis of previously theoretical as well 
as empirical research and calls attention to a crucial problem, which is identifying an ARMA model for the 
unobserved forward risk premia. This paper focuses on the statistical problem of model identification for the 
unobservable forward risk premium component. We set up a theoretical framework to study the model identification 
problem for the signal. In fact, the true ARMA model for the unobserved signal could be either identifiable or 
unidentifiable. Indeed, the signal extraction approach is feasible only for the identifiable class of ARMA models for 
the forward risk premium signal buried in the noise. Otherwise, it is infeasible. Whenever an ARMA model for the 
signal is unidentifiable, we identify a new class of functions that we call: the NGF. They are noise variances 
expressed as functions of the unknown forward risk premium MA coefficients, they are bijective and they are 
upwardly and downwardly bounded. We mathematically show that an identifiable model for the forward risk 
premium component does not always exist and the signal extraction approach is not always feasible. As a matter of 
fact, the true model is not always the identifiable one. Thus, it is well-founded to deepen insight on the class of 
unidentifiable models which are described by the NGF. To apply our theoretical findings, we consider the empirically 
evidenced ARMA models within the related literature and we analyse each case pointing out its corresponding NGF. 
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Notes 

Note 1. Forward premium anomaly. 

Note 2. Martingale.  

Note 3. Eugene Fama divided the work on informationally efficient capital markets into three categories: weak-form, 
semi-strong form, and strong-form tests which are replaced, respectively, in Fama (1991) by: tests for return 
forecastability, event studies, and private information tests. 

Note 4. The ASW's theorem states that the summation of two uncorrelated moving average processes of orders q2 
and q3, respectively, has a MA(q1) representation such that ݍଵ  Maxሺqଶ, qଷሻ. 

Note 5. The certainty equivalent is the level of wealth such that its utility is equal to the expected utility. 
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Note 6. See Jacobs (1982). 

Note 7. According to the existing empirical literature, we hypothesize that ሺଷ, ଷሻݍ ൌ ሺ0,0ሻ (i.e. a white noise). 

Note 8. ASW’s moving average summation theorem is relevant only for uncorrelated processes. 

Note 9. ሺܽ௧,ሻ is the second source of noise. 

Note 10. Given an ܣܯܴܣሺଵ, ߛ ଵሻ, we haveݍ ് 0 for all 0  ݇  ,ଵሺݔܽܯ ߛ ,ଵሻ. Otherwiseݍ ൌ 0. 

Note 11. They are also called the Yule-Walker equations. As shown in Isais-Torres and Cavazos-Cadena (2012), 
theorem 3.1, the Yule-Walker matrix is invertible for all causal stochastic ARMA processes. 

Note 12. The circumflex accent means that the coefficient is estimated and consequently known. An unknown 
coefficient will be written without a circumflex accent. 

Note 13. We calculate the first partial derivatives and we deduce the stationary point by equalizing them to zero and 
we verify the second order conditions for maxima.  

Appendices 

Appendix 1. According to equation (4), the observed time series evidences the following ܣܯܴܣሺଵ,  :ଵሻݍ

௧ାଵ,ݕሻܤ௬ሺߔ ൌ  ሻ߱௧ାଵ,ܤ௬ሺ߆ (4)

Where the polynomials ߔ௬ሺܤሻ and ߆௬ሺܤሻ are known. Equation (4) is called the RF. In addition, we have: 

ሻܤሺߔ ௧ܲ,ଵ, ൌ  ሻܽ௧,ܤሺ߆ (46)

௧ାଵ,ߝሻܤఌሺߔ ൌ  ௧ାଵ,ߥሻܤఌሺ߆ (47)

Combining equations (4), (46), and (47), we have the SF: 

௧ାଵ,ݕሻܤሺߔሻܤఌሺߔ ൌ ሻܽ௧,ܤሺ߆ሻܤఌሺߔ   ௧ାଵ,ߥሻܤఌሺ߆ሻܤሺߔ (48)

In fact, a time series has a unique ARMA representation. Then equations (4) and (48), respectively the RF and the SF, 
are equivalent. It follows: 

௧ାଵ,ݕሻܤ௬ሺߔ ൌ  ௧ାଵ,ݕሻܤሺߔሻܤఌሺߔ (49)

ሻ߱௧ାଵ,ܤ௬ሺ߆ ൌ ሻܽ௧,ܤሺ߆ሻܤఌሺߔ   ௧ାଵ,ߥሻܤఌሺ߆ሻܤሺߔ (50)

According to equation (49), we get  

ሻܤ௬ሺߔ ൌ  ሻܤሺߔሻܤఌሺߔ (51)

	
Straightforwardly, we have deg ሻܤ௬ሺߔ	݂ ൌ deg ሻܤఌሺߔ	݂  deg 	݂ ሻܤሺߔ ֞ ଵ ൌ ଶ   ଷ. According to
assumption 2 we have ଷ ൌ 0 then we get ߔ௬ሺܤሻ ൌ  ::ሻ. It followsܤሺߔ

ଵ ൌ  ଶ (52)

Now we apply ASW's theorem to equation (50). ߆௬ሺܤሻ߱௧ାଵ, is a ܣܯሺݍଵሻ, ߔఌሺܤሻ߆ሺܤሻܽ௧, is a ܣܯሺݍଷ   ଶሻ
and ߔሺܤሻ߆ఌሺܤሻߥ௧ାଵ, is a ܣܯሺݍଶ  ଷ ଷሻ. According to assumption 2 we have ൌ ଷݍ ൌ 0. Then 
 :ଶሻ. It followsݍሺܣܯ ௧ାଵ, is aߥሻܤఌሺ߆ሻܤሺߔ ଶሻ andሺܣܯ ሻܽ௧, is aܤሺ߆ሻܤఌሺߔ

ଵݍ  ,ଶݍሺݔܽܯ ଶ ൌ  ଵሻ (53)

Finally, equation (52) and inequation (53) let us deduce that the unobservable forward risk premium, ௧ܲ,ଵ,, follows 
an ܣܯܴܣሺଵ, ଵ :ଵሻ such thatݍ ൌ ଵݍ ଶ and  ,ଶݍሺݔܽܯ   ଵሻ. Q.E.D

Appendix 2. We have ݔܽܯሺଵ, ଵሻݍ  1 linearly independent equations and the only unknown polynomial is ߆ሺܤሻ 
which is of degree ݍଶ, i.e.	߆ሺܤሻ has ݍଶ unknown MA coefficients. In addition, ߪఌଶ and ߪଶ are unknown. It 
follows that we have ݍଶ  2 unknowns. The system has a unique solution, i.e. All unknowns are identified and each 
one gets a unique value, if the number of equations is equal to the number of unknowns: ݍଶ  2 ൌ ,ଵሺݔܽܯ ଵሻݍ 
1 ֞ ଶݍ ൌ ,ଵሺݔܽܯ ଵሻݍ െ 1. Q.E.D   

Appendix 3. If the number of unknowns is greater than the number of equations then we get an underdetermined 
system of equations and we can express some unknowns as functions of others, so we get infinitely many solutions. 
On the other hand, if the number of equations is greater than the number of unknowns, then we have an 
overdetermined system, given that all equations are linearly independent, we have no solutions and the system of 
equations is inconsistent. 

Appendix 4. We apply the proposition 1 so we get the proposition 4.  
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Appendix 5. We apply the proposition 1 so we get the proposition 5. 

Appendix 6. We have ݀݁ݐቀܺఏು,ቁ ൌ ݀థ,൫ߠ,൯ ൌ ߶௬,ߠ,
ଶ െ ൫1  ߶௬,

ଶ ൯ߠ,  ߶௬,. 

∆ൌ ൫1 െ ߶௬,
ଶ ൯

ଶ
, so we get two roots: ߶௬, and ߶௬,

ିଵ
.	߶௬,

ିଵ
ሿב െ 1,1ሾ so we exclude it. Then ݀݁ݐቀܺఏು,ቁ ് 0 iif 

,ߠ ሿא െ 1,1ሾሼ߶௬,	and we get ߑேீி൫ߠ,൯ ൌ ܺఏು,
ିଵ . ܸ ൌ ܺఏು,

ିଵ . ቆ
ܸଵ
ܸଶ
ቇ. ܺఏು,

ିଵ ൌ
ଵ

ௗ௧ቀഇು,ቁ
ቆ
߶௬, െ൫1 െ ߶௬,

ଶ ൯

െߠ, ,ߠ
ଶ െ 2߶௬,ߠ,  1

ቇ 

so we deduce that: ߑேீி൫ߠ,൯ ൌ

ۉ

ۈ
ۇ
,ߪ
ଶ ൫ߠ,൯ ൌ

థ,భାቀథ,
మ ିଵቁమ

ௗഝ,
൫ఏು,൯

ఌ,ߪ
ଶ ൫ߠ,൯ ൌ ොఠ,ߪ

ଶ
ഇ,

൫ఏು,൯

ௗഝ,
൫ఏು,൯ ی

ۋ
ۊ

. Q.E.D 

Appendix 7. We have ߪ,
ଶ ൫ߠ,൯ ൌ



ௗഝ,
൫ఏು,൯

 0 and ߪఌ,
ଶ ൫ߠ,൯ ൌ ොఠ,ߪ

ଶ
ഇ,

൫ఏು,൯

ௗഝ,
൫ఏು,൯

 0. It follows that ܣመ ൌ ߶௬, ܸଵ 

൫߶௬,
ଶ െ 1൯ ܸଶ ൌ ߶௬,ߠ௬,

ଶ െ ൫1  ߶௬,
ଶ ൯ߠ௬,  ߶௬, , ݀థ,൫ߠ,൯ and ݄ఏ,൫ߠ,൯ ൌ ,ߠ௬,ߠ

ଶ െ ൫1  ௬,ߠ
ଶ ൯ߠ,  ௬,ߠ  must 

have the same sign. We have: 

መܣ  0 ֞ ௬,ߠ א ൧െ1, ߶௬,ൣ, መܣ ൏ 0 ֞ ௬,ߠ א ൧߶௬,, 1ൣ. 

݀థ,൫ߠ,൯  0 ֞ ,ߠ א ൧െ1, ߶௬,ൣ, ݀థ,൫ߠ,൯ ൏ 0 ֞ ,ߠ א ൧߶௬,, 1ൣ. 

݄ఏ,൫ߠ,൯  0 ֞ ,ߠ א ൧െ1, ,௬,ൣߠ ݄ఏ,൫ߠ,൯ ൏ 0 ֞ ,ߠ א ൧ߠ௬,, 1ൣ. 

Four cases are consequently inferred: 

Case 1: ܣመ  0, ݀థ,൫ߠ,൯  0, and ݄ఏ,൫ߠ,൯  0 such that ߶௬, א ሿെ1,0ሾ. 

In fact, we have ܣመ  0 െ 1 ൏ ௬,ߠ ൏ ߶௬, ൏ 0 , ݀థ,൫ߠ,൯  ,ߠ0 א ൧െ1, ߶௬,ൣ , and ݄ఏ,൫ߠ,൯  ,ߠ0 א

൧െ1, ௬,ߠ ௬,ൣ. Given thatߠ ൏ ߶௬, we have ൧െ1, ௬,ൣߠ ؿ ൧െ1, ߶௬,ൣ then our domain is ൧െ1,  ௬,ൣ. Q.E.Dߠ

Case 2: ܣመ ൏ 0, ݀థ,൫ߠ,൯ ൏ 0, and ݄ఏ,൫ߠ,൯ ൏ 0 such that ߶௬, א ሿെ1,0ሾ. 

In fact, we have ܣመ ൏ 0 െ 1 ൏ ߶௬, ൏ ௬,ߠ ൏ 0 or െ1 ൏ ߶௬, ൏ 0 ൏ ௬,ߠ ൏ 1, ݀థ,൫ߠ,൯ ൏ ,ߠ0 א ൧߶௬,, 1ൣ, 

and ݄ఏ,൫ߠ,൯ ൏ ,ߠ0 א ൧ߠ௬,, 1ൣ . Given that ߠ௬,  ߶௬,  we have ൧ߠ௬,, 1ൣ ؿ ൧߶௬,, 1ൣ  then our domain is 

൧ߠ௬,, 1ൣ. Q.E.D 

Case 3: ܣመ  0, ݀థ,൫ߠ,൯  0, and ݄ఏ,൫ߠ,൯  0 such that ߶௬, א ሿ0,1ሾ. 

In fact, we have ܣመ  0 െ 1 ൏ ௬,ߠ ൏ 0 ൏ ߶௬, ൏ 1 or 0 ൏ ௬,ߠ ൏ ߶௬, ൏ 1, ݀థ,൫ߠ,൯  ,ߠ0 א ൧െ1, ߶௬,ൣ, 

and ݄ఏ,൫ߠ,൯  ,ߠ0 א ൧െ1, ௬,ߠ ௬,ൣ. Given thatߠ ൏ ߶௬, we have ൧െ1, ௬,ൣߠ ؿ ൧െ1, ߶௬,ൣ then our domain is 

൧െ1,  ௬,ൣ. Q.E.Dߠ

Case 4: ܣመ ൏ 0, ݀థ,൫ߠ,൯ ൏ 0, and ݄ఏ,൫ߠ,൯ ൏ 0 such that ߶௬, א ሿ0,1ሾ. 

In fact, we have ܣመ ൏ 00 ൏ ߶௬, ൏ ௬,ߠ ൏ 1, ݀థ,൫ߠ,൯ ൏ ,ߠ0 א ൧߶௬,, 1ൣ, and ݄ఏ,൫ߠ,൯ ൏ ,ߠ0 א ൧ߠ௬,, 1ൣ. 

Given that ߠ௬,  ߶௬, we have ൧ߠ௬,, 1ൣ ؿ ൧߶௬,, 1ൣ then our domain is ൧ߠ௬,, 1ൣ. Q.E.D 

Appendix 8. We get two cases: 
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Case 1: ܣመ  0 then ߠ, א ൧െ1,  ,ߠ , approaches െ1ା andߠ ௬,ൣ. We calculate the limits of the NGF whenߠ

approaches ߠ௬,
ି . The former will give us the upper bound and the latter will give us the lower bound for ߪఌ,

ଶ ൫ߠ,൯ 

because it is a decreasing function on that domain. Whereas the former will give us the lower bound and the latter 

will give us the upper bound for ߪ,
ଶ ൫ߠ,൯ because it is an increasing function on that domain. Q.E.D 

Case 2: ܣመ ൏ 0 then ߠ, א ൧ߠ௬,, 1ൣ. We calculate the limits of the NGF when ߠ,  approaches ߠ௬,
ା  and ߠ, 

approaches 1ି. The former will give us the upper bound and the latter will give us the lower bound for ߪ,
ଶ ൫ߠ,൯ 

because it is a decreasing function on that domain. Whereas the former will give us the lower bound and the latter 

will give us the upper bound for ߪఌ,
ଶ ൫ߠ,൯ because it is an increasing function on that domain. Q.E.D 

Appendix 9. Let ܴ൫ߠ,൯ be 
ఙೌ,
మ ൫ఏು,൯

ఙು,
మ ൫ఏು,൯

. We have ܴ൫ߠ,൯ ൌ
ଵିథ,

మ

ఏು,
మ ିଶథ,ఏು,ାଵ

. Substracting one half from both sides, we 

get ܴ൫ߠ,൯ െ .5 ൌ െ
ఏು,
మ ିଶథ,ఏು,ିቀଵିଶథ,

మ ቁ

ଶቀఏು,
మ ିଶథ,ఏು,ାଵቁ

. The denominator is always positive and different from zero. As a matter 

of fact ܴ൫ߠ,൯ െ .5 has the opposite sign of the numerator. The roots of the numerator are ߶௬, െ ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
 

and ߶௬,  ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
 then it is negative ߠ, ሿ߶௬,א െ ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ  and positive 

,ߠ ሿ߶௬,ב െ ൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ. Consequently, we get ܴ൫ߠ,൯ െ .5 is positive ߠ, ሿ߶௬,א െ

൫1 െ ߶௬,
ଶ ൯

ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ , negative ߠ, ሿ߶௬,ב െ ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
, ߶௬,  ൫1 െ ߶௬,

ଶ ൯
ଵ/ଶ
ሾ , and null 

whenever ߠ, equals the roots. Q.E.D 

Appendix 10. ܺఏభ,ು,,ఏమ,ು,  is nonsingular and NGF   iif ݀݁ݐቀܺఏభ,ು,,ఏమ,ು,ቁ ൌ ݀థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ ് 0 . 

,ଵ,,ߠథభ,,;థమ,,൫݀ ଶ,,൯ߠ ് 0 we get : ߑேீி൫ߠଵ,,, ଶ,,൯ߠ ൌ ܺఏభ,ು,,ఏమ,ು,
ିଵ . ܸ  such that 

ܺఏభ,ು,,ఏమ,ು,
ିଵ ൌ

ଵ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯

ቌ
െ߶ଵ,௬,߶ଶ,௬, െ൫1 െ ߶ଵ,௬,

ଶ െ ߶ଶ,௬,
ଶ ൯

െ ൬݆థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ  ݈థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯൰ߠ ݃థభ,,;థమ,,൫ߠଵ,,, ଶ,,൯ߠ
ቍ. It follows: 

,ଵ,,ߠேீி൫ߑ ଶ,,൯ߠ ൌ ܺఏభ,ು,,ఏమ,ು,
ିଵ . ܸ ൌ ܺఏభ,ು,,ఏమ,ು,

ିଵ . ቆ
ොఠ,ߪመܣ

ଶ

ሺܤ  ොఠ,ߪመሻܥ
ଶ ቇ. Straightforwardly, we get: 

,ଵ,,ߠேீி൫ߑ ଶ,,൯ߠ ൌ

ۉ

ۈۈ
ۇ

,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ିቂథభ,,థమ,,ାሺାመሻቀଵିథభ,,
మ ିథమ,,

మ ቁቃఙෝഘ,
మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯

ఌ,ߪ
ଶ ൫ߠଵ,,, ଶ,,൯ߠ ൌ

ି൭ഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ାഝభ,,;ഝమ,,

൫ఏభ,ು,,ఏమ,ು,൯൱ାሺାመሻഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯൩ఙෝഘ,

మ

ௗഝభ,,;ഝమ,,
൫ఏభ,ು,,ఏమ,ು,൯ ی

ۋۋ
ۊ

. Q.E.D 

Appendix 11. The same reasoning as in the proof of proposition 10. 

Appendix 12. The same reasoning as in the proof of proposition 10. 

Appendix 13. The same reasoning as in the proof of proposition 10. 

Appendix 14. The same reasoning as in the proof of proposition 10. 


