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Abstract

As argued by Ebenfeld, Mayr and Topper (2002), Onion options may be decomposed into one-touch double barrier
binary options (ODBs). Using this idea, these authors provide an arbitrage-free pricing formula for Onion options
within the Black-Scholes framework. Their approach rests upon solving the underlying partial differential equation.
In this paper, we take an alternative and more direct route: Based on a probabilistic approach, we compute the
risk-neutral valuation formula for an ODB. Then, by inverting the decomposition of an Onion option, we are able to
derive an alternative pricing formula for this type of an option.

Keywords: onion options, one-touch double barrier binary options, double-notouch options, arbitrage-free pricing,
Black-Scholes model

1. Introduction

Among the vast group of Exotic Options the so called Onion options gained some popularity, (Note 1) and as a
consequence, they became regularly traded at, for example, the Deutsche B orse in Frankfurt, Germany and at the
stock exchange in Stuttgart, Germany. Onion options may be viewed as nested digital double-barrier options. That is,
they are composed of a couple of digital knock-out options each of which is characterized by a corridor for the price
of the underlying. Ebenfeld, Mayr and Topper (2002) used this composition of Onion options in order to derive an
arbitrage-free pricing formula. More precisely, they proposed to decompose such an option into a series of so-called
one-touch double barrier binary options (ODBs). Then, after deriving an arbitrage-free price for an ODB, the
linearity of the pricing rule (i. e.. the fundamental theorem of finance) may then be applied to obtain an arbitrage-free
price for an Onion option. In order to find a valuation formula for an ODB, Ebenfeld, Mayr and Topper (2002)
applied the classical Black-Scholes model. In particular, they used the Black-Scholes partial differential equation
(PDE) in order to derive an arbitrage-free pricing formula for an ODB — and thus for an Onion option. In fact, it can
be shown that this formula is the unique solution of the PDE and thus the unique value for an Onion option in the
Black-Scholes model.

In this paper we provide an alternative approach to the derivation of a valuation formula for an Onion option. While
Ebenfeld, Mayr and Topper, after suitable transformation of variables, transformed the Black-Scholes PDE into the
well known heat equation, we follow a completely different approach here, which we believe to be more direct and
thus more intuitive: It is based on a probabilistic approach by computing the risk-neutral valuation formula for
currency options. A similar procedure is also pursued by Geman and Yor (1996) who price double barrier options via
a probabilistic approach. Similarly, Kunitomo and Ikeda (1992) price double barrier options with curved boundaries
via a suitable probability measure.

More recently, the pricing of double barrier options has advanced, and correspondingly, the amount of academic
research on this class of options has surged substantially. For example, Luo (2001) derives closed-form solutions for
eight types of European-style double-barrier options. Guillaume (2003) examines window double barrier option
(options where the monitoring period starts after the beginning of the contract and terminates before its expiry).
Labart and Lelong (2009) study double barrier Parisian options, options where the payoff condition depends on the
time spent in a row above or below a barrier (or a series of barriers), and not just on the hitting time(s). Buchen (2009)
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considers pricing of double knock-out barrier options with arbitrary payoff functions and time-varying barriers. Chen,
Wang and Shyu (2010) apply the reflection principle to derive a close-form pricing formula of double barrier-options.
Guillaume (2010) derives a pricing formula for double barrier options where the barrier is a step function of time —
hence called step double barrier options. And most recently, an analysis of hedging strategies of (digital) double
barrier options is provided by Obloj and Ulmer (2012).

2. Onion Options and Related Derivatives

Onion options may be viewed as a particular type of nested barrier options. (Note 2) To begin with, consider a
double barrier option, which is a simple example for a non-standard barrier option. This type of option combines an
upper with a lower barrier which are effective simultaneously. Therefore, to trigger either the knockout or the
knock-in effect, it is sufficient that the price of the underlying reaches either of both barriers.

The Onion option is a generalized double barrier option: It consists of a couple of pairs of barriers, each of which is
composed of a lower barrier H~ and an upper barrier H* which lies below respectively above the initial spot price
of the underlying. In order to ease exposition, we subsequently assume that there are exactly three couples of barriers,
denoted by H; and H}, 4 = 1,2,3. Every couple (H;, H}) builds a corridor around the initial price of the
underlying, such that

H3<H;<Hi<So < Hf < Hf < H

holds, where S, denotes the initial spot price of the underlying. Hence, there is an inner range, a middle range, and
an outside range. Basically, these corridors work like barriers of a vanilla knock-out option or, to be more precise,
like the corridor of a double barrier option. Therefore, the two barriers of a corridor work simultaneously, meaning
that the option, or in this case the corridor, gets knockedout if and when either of the two barriers of the respective
corridor is hit by the price of the underlying. — It makes no difference whether the upper or the lower barrier is
reached; and once a corridor is knocked-out it can not be knocked in again later.

The (possible) payoff of the option, received at expiry, is a predetermined fixed amount that makes the Onion option
similar to a corridor-dependent binary option. More precisely, an Onion option represents a mixture of barrier and
cash-or- nothing options (CON). (Note 3) The exact amount depends on the range which the price of the underlying
has left during the option’s life. Assume, for instance, that each corridor is worth 10 Euro. Then, the maximum
payoff is 30 Euro when no range is left. If the inner range is the only one which was left by the price of the
underlying during the option’s life, the payoff equals 20 Euro. If only the barriers of the third corridor are not reached,
a payoff of 10 Euro remains. When this last range is also left, the option vanishes instantly. The payoff of the option
thus depends on the minimum and the maximum of the underlying during the lifetime of the option, that is on the
running minimum and maximum at maturity, m(7) and M(T) respectively.

Frequently, Onion options are written on currencies, that is on foreign ex-change rates. However, there are a priori no
reasons to restrict the type of the underlying to an exchange rate. Nevertheless, in the rest of this text we focus on the
currency Onion option.

3. Decomposing Onion Options

In the following our goal is to find a pricing formula for the Onion option. In this respect the main problem is how to
include all of the barriers into a single formula. The major idea is to split an Onion option with, say, three corridors
into three other options which synthetically replicate the onion option. Then, using therisk-neutral valuation formula
and finding a suitable probability measure, we are able to derive a valuation formula for the Onion option within the
Black-Scholes framework.

To be more precise, we decompose the Onion option into three one-fouch double barrier binary options (ODB), also
known as double-no-touch digital options or double-lock-out options, and then look for a pricing formula for an
ODB. (Note 4) ODBs may be viewed as Onion options with only one corridor or as double barrier options with a
binary payoff. Accordingly the two barriers again work simultaneously and, therefore, in order to trigger the
knock-out effect it suffices that either of both barriers is reached.

We now decompose the payoff of an Onion option, which allows us to split it into a series of ODB options. From
Section 2 we know that the payoff of an Onion option is determined by the barriers of three corridors H;,H}, i =
1,2,3. Let S, t € [0,T] stand for the value of the underlying at time t € [0, T], where T is the date of maturity. To
write the payoff explicitly as a function, we define the following two random variables

m(t) := min S(u), and M(t) := max S(u).

O<u<t O0<u<t
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m(t) and M(f) are F* —measurable. The payoff function of the Onion option is denoted by ¥ and can be written

as
3R: H; <m(T)< M(T) <Hy
2R: Hy; <«m(T)< M(T) < Hy and {m(’l’) <Hy or M(T)>H{}

R: Hy <m(T)< M(T) < Hy and {m(T)<H, or M(T)>H, }

0: else, 0

where R denotes the fixed payoff that the holder of the option receives per corridor which the price of the underlying
does not leave until maturity. For example, the investor receives 3R Euro when the underlying stays inside the inner
corridor during the option’s life, that is, the minimum of the underlying in this period must be above the first lower
barrier H~ and the maximum has to lie below the first upper barrier H*. The two other corridors work analogously.

In order to explain the connection between the Onion option and the ODB options, observe that ¥ can be denoted
as a sum of the payoff functions of three ODB options

v=U"1+U+ U3,

2)
where the payoff function of an ODB option is given by
R : H <m(T)<M(T)<H/ o .
Wi = , for i=1,2,3.
0 : else
3)

Then, formulas (1) and (2) apparently coincide.

A portfolio consisting of three ODB options can thus be considered as a synthetic Onion option if the three corridors
are arranged in the same way as the Onion option’s three corridors. Specified in this way, the synthetic option must
cost the same as the Onion option under the assumption of no arbitrage. Since the Onion option can synthetically be
replicated by three ODBs, it is sufficient to find a pricing formula for an ODB option.

4. Pricing One-Touch Double Barrier Binary Options

The problem of pricing an Onion option is now reduced to the problem of pricing one-touch double barrier binary
options (ODBs). Hui (1996) derives a pricing formula for this kind of an option and this section draws upon his
paper. In order to price an ODB, the Black-Scholes framework is utilized (along with the familiar notation). In
particular, we apply the Black-Scholes PDE for foreign currency options (see, for example, Musiela and Rutkowski,
2005, ch. 3 and 4; and Bjork, 2009, ch. 17):

o1 , 1 250"
ot o\

~,

LOf
(rqg — T S— —r — | =
s T (ra —7f)S55 —Td If

V]
Y]

1 (S.t) € (0,00) x (0,7T)

which holds for al subject to the terminal condition

f(s,T) = g(s).
(rq and 77 denote the domestic and the foreign interest rate, respectively.) First, however, we have to verify
whether or not the payoff of an ODB fulfils the requirements of this formula and in particular of the following
familiar theorem in order to be applicable to ODB options.
Theorem 4.1 (Black-Scholes PDE) Let 9 = ® — B pe 4 Borel-measurable function such that the random

X = a(Sr)

variable is square-integrable under P Then the arbitrage price in Mais of the claim X

which settles at time T is given by the equality Tt X) =v(Se. 1) yhere the function

viRy X 10, 7] —R solves the Black-Scholes partial differential equation
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(s,t) € (0,00) x (0,7), v(s,T) = g(s).

forall

subject to the terminal condition

In particular, we have to check whether or not the ODB’s payoff function ¢ (5) is measurable and integrable. To

this end, we modify the payoff function of an ODB, given by eq. (3), somewhat to obtain:

{ R : H <s<H+
g(s) =

0 : else

)
where H* and H~ are the upper and the lower barrier, and R denotes the payoff of the ODB. Obviously, ¥ is a
piecewise continuous function with two discontinuities. Therefore, 9 is measurable and also integrable. Hence, the
Black-Scholes PDE is applicable in this case.

Now, we have to argue why it is sufficient to consider the (modified) payoff function ¥ instead of “i as given in
eq. (3). To see this, recall that the terminal payoff is only paid if the underlying stays inside the corridor during the
whole time interval. Thus, today’s value of the option is nil if it has already been knocked-out. However, we are only
interested in the non-trivial case where the option has not yet been knocked out. So whenever we are looking for the

value of an option we are always implicitly assuming that it is still alive. Formally, the dynamic of the pricing

t (H .H7) x (0,7).

formula f(5-1) s only defined on the open se This implies when the open set is left,

the dynamic is no longer described by the Black-Scholes PDE but by the boundary conditions. They state that the
valuation formula equals zero on the boundary. As the dynamic on the boundary is also given by these conditions,
they imply that it will stay on the boundary for the rest of the option’s life. In other words, the payoff of an ODB can
only be obtained if at each instant of time before maturity the actual price of the underlying lies inside the range —

and this can only be achieved when the underlying lies all the time inside the corridor. Therefore the ODB may be
considered as to be path-independent. For this reason, in order to price an ODB it suffices to consider ¥, given by
eq. (4), instead of ” Consequently, the payoff function g is path-independent, and an ODB may be priced by

means of Theorem 4.1.

It remains to specify the boundary conditions of the payoff of an ODB. The option vanishes when the underlying hits

either the upper or the lower barrier, H* or H~. Thus, for all t<T the following boundary conditions must

hold for the pricing formula f:
f(H ,t) =0, f(H".t)=0,
together with the final condition
f(S,T) = R.
In order to transform the Black-Scholes PDE into the heat equation, the solution of which is well known, we proceed

as follows. First the PDE is made dimensionless by scaling S and f by the constant H™  Then the backward

PDE is turned into a forward PDE by reversing the time scale. Both steps are pursued by means of the following

. . T .
transformations where - and ' are the new transformed variables:
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o - T
t = T2,
a= (6)

einl( =5+ 8T -2 S 72
f(S.t) = H € In(3=)+8 D77y (ln (—).(T—t)ﬁ—) ,
H— 2 )

or in shorthand notation:

f=H P Tu(x,71),
where the constants - and B are defined as

e Y1) and B— -Yk_12_2,
o = _5( — 1) and B := _I(’ — )" —5Td-

Inserting these substitutions into the Black-Scholes PDE indeed yields the heat equation, extensively investigated in
the literature: (Note 5)

(=]
~
=
(]

u

- | N
J |

)
(S

C

-

-
I

-~
.
~

®)

D < 1 < L
for T =0 and o5 0 o6 ( H ) " Note that eq. (8) is a linear second order PDE. In fact, it belongs to the

class of parabolic differential equations. (See, for example, Evans, 1998, p. 349 ff.)

The boundary conditions f(H",t) =0 and S(H 7.1) = 0 have to be transformed as well. Using the

transformed variables, given in eqs (5)—(7), the boundaries turn into

uw(0,7) =0, u(L,.7)=0
T >0 L :=In %;) . s
for ' = ** where we define as a shorthand notation. The final condition
f(5T)=R turns under the same transformations into the following initial condition
Reor
u(x.0) = T
for O<x< L.

We are now well prepared to derive the pricing formula of the ODB within the Black-Scholes model. — We skip,
however, the derivation, which can be found in Ebenfeld, Mayr and Topper (2002), and state their result immediately.

(Note 6)
Lemma 4.1 In the Black-Scholes model the arbitrage-free price of an ODB option fis given by
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)

Thus far we have derived a pricing formula for ODB options. Since we have seen in Section 3 that an Onion option

) PR _
Jfonion = ) ]f(:»dbl]{,' ]1, )s

|

may be decomposed into three ODB options, it remains to reverse this

decomposition. To this end, it remains to substitute the ODB’s pricing formula (9) on the right hand side and then we

obtain the pricing formula for Onion options:

Theorem 4.2 In the Black-Scholes model the arbitrage-free price of an Onion option fonion is given by

3 o 27n R (%)’I — |:_l:)71 (%)n
f()nmnlS t) ZZ — L2 o B - i

i=1 n=1 “2+(E[',Z)_

. (nm S 1 [/nm\2 _] 92,m '
x sin (Tluf) e\p( 3 [(1—) — “f] o= (T — f))} .

5. An Alternative Approach to Price ODBs

(10)

In this section an alternative approach for pricing ODBs and, therefore, Onion options is presented. Our starting
point is the observation that the value of an ODB option may be viewed as the probability of the underlying price
staying within the barriers during the option’s life, discounted at 7; and 7. This encourages us to follow a
probabilistic approach based on directly computing the risk-neutral valuation formula for currency options (A.1). A
similar approach is also done by Geman and Yor Geman and Yor (1996) who price double barrier options via a
probabilistic approach. Kunitomo and Ikeda (1992) price double barrier options with curved boundaries via a
suitable probability measure. Our approach rest upon their work. — Eventually, we feel that this probabilistic
approach is more intuitive than the transformation of a suitable version of the Black Scholes PDE into the heat
equation.

Note that even though we are able to show that the pricing formula derived from the Black-Scholes PDE is unique, it
is still possible to find another formula. However, a different approach must be chosen. The uniqueness theorem
covers only solutions derived by solving the Black-Scholes PDE leaving the door open for alternative ways. Clearly,
an alternative formula must yield the same value of an Onion option. Hence, a new formula may be found, but not a
new price.

Recall that the risk-neutral valuation formula states that the option’s arbitrage price equals its discounted expected
payoff

me(X) = €™ Ep. e ral x

1,

where X is the option’s payoff function. Yet, in order to use this formula, it is useful to have a more compact version
of the payoff function than the one in eq. (1). This may be achieved by using the indicator function

S+ = - 9

T.vl(‘.-—sl ,l . Rl{]l‘ -Z:”J:’].Il,4\]!:’1‘]-::11:}. 1 = l.u.3
Note that although we wish to evaluate the Onion option, the payoff of which is given by

P(St) = ¢1(St) + wa(ST) + W3(ST) |

Published by Sciedu Press 16 ISSN 1923-4023  E-ISSN 1923-4031



www.sciedu.ca/ijfr International Journal of Financial Research Vol. 4, No. 4; 2013

it is sufficient to derive a valuation formula for the ODB, because the conditional expectation is linear and we, thus,
obtain

. —ra(T—1) o ) ] ; - R ]
me (V) = e 4 Y {Epe 01| Fi] + Ep- [p2| Fi] + Ep- [03| Fi]} .
Substituting "' in the risk-neutral valuation formula yields
(i) = Re 4T~ ]ET-'-[I{IL <m(T), M(T)<H}} Fi] -
In order to calculate this conditional expectation we define an auxiliary process S. First, however, we recall from

the literature that under the martingale measure P* the process S can also be written as

N ~ i i 1 . '
S(u) = S(t) exp ((T(H (uw) — WI(t)) + (r - ;rr") (1 — t))

(ra —ry).

for all “ = where ! is a shorthand notation for Note that since we are primarily concerned

about currency options, both the domestic and the foreign interest rate together determine the drift of the process S,
Now this alternative formulation for (%) is utilized in the definition of 5- The respective new auxiliary Wiener

process " is defined fora fixed £ = O as

Wiu) . =W({t +u)— W(t), for uw=0.

The process S(u) is defined the following way

1 o .

S(u) := exp ((1 - ;rr“) u+ oW (u ,))

. . . S((t), S(u) .

It is easy to verify that with the help of can be written as

S(u) = S(t)S(u—1t) for u>t=>=0.

S(0) = 1.

Observe that *
Next we show in which way the maximum of the new process depends on M(7), the maximum of the old process.

T

For a fixed point in time t = 1% the maximum M(T), can be rewritten with he help of el L2
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Cn

M(T) = max

u<T

(u)

= max{ max S(u), max S(u.)}
: t<u<T

u<t

= max 4 M(t), I_nnggr S(t) S(u — t)}

= max

M(t), S(t) max b(u— f)}

t<u<T

= max X

0<u<T —t

S — —
—:NI(T—t)

f—Mf—’H/—’H/—’H

M(t), S(t) max 5‘(11‘)}.

A corresponding equation holds for the minimum, and we thus define the minimum of the process 9, denoted by

(T —t), analogously. Using this result the ODB’s payoff function ¥ may be rewritten as

¢ = Rl cm(r), M(T)<H*)
— R]-{II* “m(t), M(t)<H+} 1{]1* IS(t)<m(T—t), M(T—t)< ‘H+/S(t)} -
This new version of the payoff function is substituted in the risk-neutral valuation formula, yielding
m(p(S(T)) = Re T YEp. |1 ), M(2)
m(p(S5(L)) = KHe Pe | L{H- <m(t), M(t)<H+}
1 {H- /8(t)<im(T—t), M(T—t)<H* /S(t)} | ]:’]

o ,—Td(T—t) )
= Re ]EW" [1{11*‘,"‘S(t)-:;:ﬁu_’l'—t].AI(’I’—{)-::;IH,,"S(r}}]

H H™
o —ra(T—t)p* < 7 . _
— Re P {—S(t‘) - (T —t). \I(T t) < S(t)]

The first equality holds because S(t), M(t) and (1) are Fi I~ measurable. Moreover, M(T —1) anq

m(T —1) are independent of the 0"algebra Fi. (Note 7)

g:[H ,H'|x[0,T] = R

We define the price of an ODB option as a function of the current spot price

St of the underlying and the time t € [0‘ T1

o i +
g(S,,t) = Re maT-0)p* [Hb_ <m(T —1t), M(T —1t) < H ]

t t

In order to compute g we need a density function for two absorbing barriers, one above and the other below the
current spot price of the underlying. The following theorem provides exactly this density function. It is taken from
Kunitomo and Ikeda (1992).
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Theorem 5.1 Suppose Y0} follows the geometric Brownian with Y(0) = Yo and Ic [4 B] Then

theprobabllllythat A<m(t) < “(” < B fora t € [O‘ t] and S(t) € I is
FNI)——‘/"( j{: K () d”.

where

| B\" 2%-1) [In(y) —In (}’()(7{1’:)%) —(r— %i)f
l‘n(l/) = 1 c

An+l 2-1 [In(y) —In ((%)Qn ‘—f) —(r— "_T)f

(A . 0
()OB") oV

c(-)

with being the density function of the normal distribution.

Proof: For the proof see the appendix of Kunitomo and Ikeda (1992). In order to get straight barriers we have to
substitute 6; = 8, = 0 in their proof.

Now the required density function is found and we thus can calculate the conditional expectation in the risk-neutral

valuation formula of the Onion option. Note that the underlying process is now the auxiliary one o(u) and.
S(0) =1 e  H- 5
therefore, we have St and the lower oneis ¢ where “t is

Furthermore, the upper barrier is

9( i)

Fi ~ measurable. The time interval in which is defined is [0, T - f]. The interval [ is, of course,

(H‘ n+)
bl ? b! : . .
Formally this yields

Hence, we obtain

g(Se,t) = Rc—rd(_'l"—tjl

o0

o+ 112(:%(”—7‘])—1) ) i
< ¥ 1 6F) N [ )] — N (a0

__(}1)(fﬂh1rﬂ*1)(}{ )m( F(ra—rs)-1)

S,

i H+

x (N[d(H™,m) + 2(m)] — N'[d(H",m) + z(m)])
(11)
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where NL-] stands again for the standard normal distribution and the following shorthand notations are used

»

In (:\‘) +2mIn (;;—+) 4. ((,.d —ry) — vT) (T — t)

d(X,m) = - T 1)
o/ ({4 — 1)
2In (%{—) — 4m In (#‘—)

z2(m) =

o/ (T —t)

We have thus arrived at a pricing formula for ODB options. In order to obtain a pricing formula for the Onion option
we just have to add three ODB pricing formulas with the respective barriers in the same way as we did in section 4.
6. Examples

In this section we use the previously derived formulas (10) and (11) in order to provide two examples. These are
used to compare the actual spot prices of an Onion option with its theoretical value in the Black-Scholes model. In
order to calculate the latter, either of both formulas may be applied, as both must yield the same value.

As a first example consider the Onion option with the WKN 683 989 (ISIN DE000683989/7) which is based on the
USD/Euro exchange rate. This option expires on June 23rd, 2003 (Note 8) and it has these barriers

H =088, H, =087, Hy; =0.86,

H{ =106, Hyf =107, Hi =1.08.

Table 1. Example with WKN: 683 689 Comparison of the actual spot price and theoretical value of an Onion option
with the USD/Euro exchange rate as underlying.

t S a Td rf price f(S¢,t) 3
18/10/02 0.9719 9.4113% 2.50% 1.5% 18.610 18.7253 -0.34%
25/10/02 0.9778 9.0635% 2.50% 1.5% 19.666 19.5221 +0.73%
31/10/02 0.9869 9.0473% 2.50% 1.5% 18.350 18.9767 -3.41%
04/11/02 0.9951 8.9488% 2.50% 1.5% 16.990 18.3347 -7.91%
08/11/02 1.0100 9.1379% 2.50% 1.5% 15.020 15.4963 -3.17%
15/11/02 1.0045 8.8538% 2.50% 1.5% 16.600 17.4627 -5.20%
20/11/02 1.0021 8.8193% 2.50% 1.5% 17.900 18.2201 -1.82%
25/11/02 0.9950 8.7629% 2.50% 1.5% 20.230 19.8067 +2.09%
02/12/02 0.9931 8.4754% 2.50% 1.5% 20.370 21.0924 -3.55%
05/12/02 1.0001 8.3665% 2.50% 1.5% 19.640 20.3655 -3.69%
10/12/02 1.1032 8.3937% 2.50% 1.5% 17.530 17.7036 -1.01%
16/12/02 1.0215 8.3277% 2.50% 1.5% 15.080 15.9169 -5.55%
20/12/02 1.0246 8.3547% 2.50% 1.5% 14.290 15.1612 -2.83%
02/01/03 1.0474 8.4512% 2.50% 1.5% 8.270 8.0362 +2.83%
06/01/03 1.0472 8.6746% 2.50% 1.5% 8.730 8.0156 +8.18%
10/01/03 1.0519 8.7311% 2.50% 1.5% 6.230 6.4316 -3.24%
15/01/03 1.0518 8.6822% 2.50% 1.5% 6.590 6.6088 -0.29%
20/01/03 (Note 9) 1.0658 8.6585% 2.50% 1.5% 2.670 2.2781 +14.68%
22/01/03 1.0690 8.5790% 2.50% 1.5% 1.580 1.5071 +4.61%
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The obtained results are provided in Table 1. The last column denotes the relative difference between the real and
theoretical value which is defined as € = (price—f)/price. This is a suitable measure for the difference because it
makes them comparable for different spot prices. In this example € is almost always between —5% and 5% with only
few exceptions. Hence, most of the time the actual price is very close to the theoretical value.

As a second example we consider an Onion option with the Yen/Euro exchange rate as an underlying: WKN 683 986
(ISIN DE000683896/3). This option expires on December 22nd, 2003 and its barriers are (Note 10)

11] —_— 11“‘ 113 = 11)9. 113 — l()\
Hf =130, Hf =131, Hy =132.

Table 2. Example with WKN: 683 686 Comparison of the actual spot price and theoretical value of an Onion option
with the Yen/Euro exchange rate as underlying

t S, o Td rf price (S, t) g
09/10/02 121.7019 7.8039% 2.50% 0.1% 8.65 10.9946 -27.11%
23/10/02 121.5562 8.7051% 2.50% 0.1% 8.87 11.8035 -33.43%
06/11/02 121.9740 7.3572% 2.50% 0.1% 10.38 12.7964 -23.28%
20/11/02 122.6710 7.4478% 2.50% 0.1% 10.71 12.2276 -14.17%
27/11/02 121.6544 7.8869% 2.50% 0.1% 11.28 12.2992 -9.04%
11/12/02 124.6015 7.2392% 2.50% 0.1% 9.45 10.6507 -12.71%
27/12/02 124.5606 7.3176% 2.50% 0.1% 9.32 10.9937 -17.96%
08/01/03 125.0861 7.0877% 2.50% 0.1% 9.97 10.8285 -8.61%
22/01/03 126.5813 7.0960% 2.50% 0.1% 8.43 8.3705 +0.71%
29/01/03 128.5304 6.9938% 2.50% 0.1% 6.49 47324 +27.08%
12/02/03 (Note 11)  129.8147 6.9912% 2.50% 0.1% 3.07 2.8183 +8.20%
19/02/03 127.4619 7.1982% 2.50% 0.1% 5.74 6.7933 -18.35%
05/03/03 128.8728 7.3143% 2.50% 0.1% 4.49 4.6102 -2.68%
12/03/03 129.4159 7.2765% 2.50% 0.1% 4.32 3.7576 +13.02%
26/03/03 128.2362 7.4387% 2.50% 0.1% 5.56 6.1392 -10.42%
09/04/03 128.6894 7.4674% 2.50% 0.1% 4.81 5.5360 -15.09%
22/04/03 131.6842 7.4721% 2.50% 0.1% 0.97 0.2277 +76.53%

The results obtained for this option are displayed in Table 2. The relative deviation of the actual prices from the
theoretical prices are more substantial than in the first example. Arguably the assumptions underlying the
Black-Scholes model are not justified in the present context: Transaction cost may make potential arbitrage
opportunities vanishing; investors may be barred from replicating and trading exotic options. And also, while
arbitrage opportunities did exist for some time, no trader may have realized this.

Now consider an accompanying Onion option, the option with the WKN 683 983. It has the same underlying and the
same barriers as the option in the last example. The only difference between the two is the expiration date. While the
option of our previous example expires on December 22nd, 2003, this option expires already three months earlier on
September 22nd, 2003. Some of their respective actual spot prices were:

WKN expiration 3/10/02 23/10/02 13/11/02 27/11/02
683 986 22/12/03 9.42 8.87 10.34 11.28
686 983 22/09/03 7.19 7.02 8.33 9.38

In fact, these prices provided an arbitrage possibility: Sell the longer-running option short, and buy the same number
of options of the cheaper, shorter-running option. The difference between the two spot prices is already a save profit
which can be invested in a risk free bond. The following scenarios might now happen: Either the options reach the
third barrier, then both options expire worthless. However, that happens only simultaneously as they have exactly the
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same barriers. In this case, there is still the margin from the beginning — a riskless profit. In the other scenario the
long position yields a positive payoff at maturity, the exact amount of which of course depends on the barriers which
were hit. Yet, irrespective of which barriers are hit, the options in the short position have reached the same barriers
and can, therefore, not yield a higher payoff. Therefore, use the payoff of the short-running option to either settle the
short position at maturity, or if it expires worthless before maturity, an additional profit is collected. — Remarkably,
this arbitrage opportunity lasted for almost two months until at least the relative price difference was reduced in the
market.

This type of mispricing is hard to explain within the Black-Scholes model: There is no reason for any investor to buy
the longer-running option, and the emitting bank runs the risk of potential losses if customers become aware of this
arbitrage opportunity. In fact, if someone had detected this opportunity, prices should have adjusted quickly. Since
this obviously did not occur, we may conclude that the Black-Scholes model is only of limited scope within this
framework. In particular, within the Black-Scholes model, it is assumed that the market is frictionless, implying that,
among other things, a single deal has no direct effect on the option’s price. However, the thinner the trading volume
is, the more unrealistic is this assumption — and notably exotic derivatives frequently have a thin trading volume.
Also, the Black-Scholes model may simply not be applicable, and correspondingly the issuer may have decided not
to price the option according to the arbitrage-free price within the Black-Scholes model.

7. Conclusions

In this paper we have considered a particular type of an exotic option: Onion options. This type of an option may be
viewed as a modified double barrier option: it has several corridors and each time the price of the underlying touches
either the upper or the lower barrier of a corridor, the payoff of the option is reduced by some given amount. If up to
the time of maturity of the option, the barriers of all corridors are touched, the option ceases to exist and the payoff is
nil, otherwise the payoff is determined by those corridors the barriers of which are not hit.

Although the payoff of an Onion option is determined by a simple rule, their valuation is by no means simple. In
order to obtain an arbitrage-free formula within the Black-Scholes model, two features turn out to be of significant
importance. Firstly, an Onion option may be decomposed into several one-touch double barrier binary options
(ODB); and secondly, both the Onion option and the ODB may be regarded as to be path independent as their payoff
does not directly depend on the path of the underlying provided that the option is alive at maturity. Given these two
features one can derive pricing formulas for the Onion option. Ebenfeld, Mayr, and Topper (2002) provide such a
formula based on the well known Black-Scholes PDE.

We recapitulate this result and then provide an alternative pricing rule based upon the risk-neutral valuation formula
for currency options. Although both formulas are derived in different ways and look differently — in fact both
formulas require the calculation of an infinite sum — , the prices they yield for a given option necessarily coincide.
So both the formula of Ebenfeld, Mayr, and Topper as well as ours allow for calculating the arbitrage-free price of an
Onion option, and then to compare this price with the actual spot market price.

A few questions are left open for further research. One is to scrutinize the numerical behaviour of both valuation
formulae, i.e., their speed of convergence, numerical stability etc. Moreover, it is also an open question how an
Onion option can be hedged without using Onion options or other double barrier derivatives. Finally, one may
modify the payoff structure of the Onion option somewhat so as to generate new, closely related products. For
example, one may consider an Onion option with knock-in effects instead of with knock-out effects.
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Notes

Note 1. In 1998 Warburg Dillon Read was the first bank to offer an exotic option with these characteristics. They
called it a Multi-Double-Lock-Out-Warrant and its underlying was a foreign exchange rate. Later they issued another
option named Quattro-option — an Onion option with an additional corridor and once again a foreign exchange rate
as underlying. Sometimes the Onion option is also called Trinity-Double-Lock-Out Warrant.

Note 2. For more information about barrier options see, for example, Zhang (1998) pp. 203-259.
Note 3. A binary option with a fixed monetary payoff is called cash-or-nothing option.

Note 4. The same idea is proposed by Ebenfeld, Mayr and Topper (2002).

Note 5. See for example Bleecker and Csordas (1996), Churchill and Brown (1978) or Evans (1998).

Note 6. It is straightforward but tedious to check that f'satisfies the boundary and final conditions and that it
converges.

M(T —t) = max S(u)
Note 7. This can be seen the following way: O<u<T—t and for every 0> £>> T holds
S(T—t) = exp (()‘—%)(T—(]+ﬁ“-iT—f]) where W (T—t) = W(T)— W (t) and
W(T)-W() is independent of © ' by the definition of a Wiener process. Therefore, M(T —1t) is as
wellas TUT —1) independent of Fi )

Note 8. Actually, the first barrier of this option got knocked out on January 17th, 2003, and the option got ultimately
knocked out on January 24th, 2003.
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Note 9. This first barrier of this option got knocked out on January 17th, 2003.

Note 10. Actually, the first barrier of this option got knocked out on February 5th, 2003, and the option got
ultimately knocked out on April 23rd, 2003.

Note 11. This first barrier of this option got knocked out on February 5th, 2003.

Appendix A. Currency Options

As mentioned above, the underlying of an Onion option is frequently a foreign exchange. To this end we must
complement our model by taking into account for the foreign currency, and thus for the foreign interest rate. In this
section we modify the Black-Scholes model accordingly. In the Black-Scholes model stock price processes are
usually assumed to follow a geometric Brownian motion — and this also assumed to be true for foreign exchange
rates. (Confer for example Hull, 2000, p. 283 and Bjork, 2009, ch. 17.)

We shall see that the effect of introducing a foreign interest rate, denoted by 7y, is similar to that of allowing for a
stock to pay dividends. To this end, we extend the Black-Scholes model for dividend paying underlyings — or for

currency options. This procedure leads us to a modification of the original Black-Scholes PDE of Theorem 4.1. The
following lines are based on Musiela and Rutkowski (2005), ch. 3.2 and Bjork (2009), ch. 16.2.

Subsequently we assume that the stock pays a continuous dividend at a fixed rate N proportional to the value of

the underlying. In order to account for this, we first have to generalize the concept of a self-financing strategy. Let

@

1 12
) be a trading strategy. Now * is called self-financing if its wealth process satisfies the following

O=(0".0Q

condition

dV,(o) = (f),l dS; + l]orl S, dt + Of dB, .

g =+,

Next, we introduce an auxiliary process to describe the dividend paying stock. Defining " " the

1

auxiliary process St s defined the following way

Sr =™ Sr y

where “'' is the original stock price process (i. e. without a dividend). It is easy to verify that the dynamic of the

auxiliary process is given by the stochastic differential equation

dS, = p, S, dt + oS, dW, .

To obtain the modified Black-Scholes PDE we first need a modified risk neutral valuation formula for currency
options.With r,; denoting the domestic interest rate the following formula holds

m(X)=e"Ep.[e "X |F], Vtelo,T].
: - ) (A.1)
The difference to the original version of this formula is that the unique martingale measure P* differs from the
original one, and thus the stock follows a different dynamic.

The Black-Scholes PDE for dividend paying underlyings reads as

v 9 907V - Ov
Y + —0°8 =5 4 ( r — ,]’],\‘ 5

s

—ro=1,
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forall ' t) € (0,00) x (0, T), subject to the terminal condition

v(s.T) = g(s).

The proof is basically the same as for Theorem 4.1 only replacing the underlying by St and its dynamic.

Thus, the Black-Scholes PDE for currency options is obtained

subject to the same terminal condition

v(s,T) = g(s),

where ¥ (8) is the option’s payoff function.
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