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Abstract 

This paper has considered portfolio credit risk with a focus on two approaches, the factor model, and copula model. 
We have reviewed two models with emphasis on the joint default probably. The copula function describes the 
dependence structure of a multivariate random variable, in this paper, it used as a practical to simulation of generate 
portfolio with different copula, and we only used Gaussian and t–copula case. We generated portfolio default 
distributions and studied the sensitivity of commonly used risk measures with respect to the approach in modeling 
the dependence structure of the portfolio. 
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1. Introduction 

We need to know components of portfolio risk and their interaction. The Basel Committee for Banking Supervision 
in its Basel II proposals to develop an appropriate framework for a global financial regulation system; seeBIS (2001). 
Several portfolio credit risk models developed in the industry have been made public; e.g., CreditMetrics (Gupton et 
al. 1997), CreditRisk+ (Credit Suisse Financial Products 1997) and Credit Portfolio View (Wilson 1997a and 1997b). 
Others remain proprietary, such as KMV’s Portfolio Manager (Kealhofer 1996). Although the models seem quite 
different on the surface, recent theoretical work has shown an underlying mathematical equivalence among them 
(Gordy 2000; Koyluoglu and Hickman 1998). The credit portfolio models to achieve portfolio loss distributions, 
which are models, can be classified as based on credit rating systems; See Crouhyet al. (2001) foran exact 
description and analysis of the various models. Frey and McNeil (2001) studied of mathematical side of the models, 
and they considered the modeling of dependent defaults in large credit portfolios using la-tent variable models and 
mixture models. Crouhy et al. (2000) compared and reviewed models on the benchmark portfolio like; the credit 
migration approach, the structural approach, the actuarial approach, and McKinsey approach.However, few studies 
have attempted to investigate aspects of portfolio risk based on rating-based credit risk models thoroughly. Gordy 
(2000)offered comparative anatomy of two particularly influential benchmarks for credit risk models, the Risk 
Metrics Group's Credit Metrics and Credit Suisse Financial Product’sCreditRiskା. ‡Kiesel et al. (1999) employ a 
"mark-to-market" model and stress the importance of stochastic changes in credit spreads associated with market 
values - an aspect also highlighted in Hirtle et al. (2001). 

The aim of this paper is to contribute to the understanding of the performance of rating-based credit portfolio models. 
We applied a default-mode model to assess the impact of changing dependence structure within the portfolio. First, 
we discussed the copula model as one of the dependency approaches within the portfolio. Second, we mentioned 
about a factor model and focus on the effects of default dependence model on within the portfolio.Eventually, we 
simulated types of copula model with different degree of freedom within the portfolio. 

2. Copula Modeling 

This part we want an overview of basic copula used in structural and models. Copulas provide a natural way to study 

and measure dependence between random variables. Suppose we have specified a portfolio of ݊ obligors, with 

default times߬ଵ, ߬ଶ, … ߬. The variable of default of obligor݅, ݅ ൌ 1,2, …݊, at time t, is donated as ܻሺݐሻ ؔ 1ሼఛರሽ. The 

probability space isሺΩ,. Ρሻ. This space has filtrationॳ ؔ ሼ࣡௧; ݐ  0ሽ: 

࣡௧ ؔ ሺߪ ܻሺݑሻ; 0  ݑ   ሻݐ
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For the joint default probability at time t, evaluated at time 0, as ܨሺݐሻ 

ሻݐሺܨ ؔ ܲሺ ଵܻሺݐሻ ൌ 1, ଶܻሺݐሻ ൌ 1,… ܻሺݐሻ ൌ 1|࣡ሻ 

The survival property as ݏሺݐሻ 

ሻݐሺݏ ؔ ܲሺ ଵܻሺݐሻ ൌ 0, ଶܻሺݐሻ ൌ 0,… ܻሺݐሻ ൌ 0|࣡ሻ 

We take for granted the copula definition as a joint distribution function with uniform margins, which implies that 
 and the marginal distribution ܥ and take for granted the fundamental Sklar’s theorem, in terms of a copula	ܥ
functionsܨሺݐሻ, ݅ ൌ 1,2, … , ݊: 

ሻݐሺܨ ൌ ,ሻݐଵሺܨሺܥ ,ሻݐଶሺܨ … ,  ሻሻݐሺܨ

The joint survival probability ݏሺݐሻwith survival copula,ܥሙ and the marginal survival functions	 ܵሺݐሻ ؔ 1 െ  :ሻݐሺܨ

ܵሺݐሻ ൌ ሙሺܥ ଵܵሺݐሻ, ܵଶሺݐሻ, … ܵሺݐሻሻ 

Factor copulaୄܥ is, 

,ଵݑ൫ୄܥ … , ൯ݑ ൌ ଵݑ ൈ ଶݑ ൈ …ൈ  .ݑ

In the credit risk case, since the variables߬ are default time, the copula represents default dependence. It is donated 
asܥఛ, 

ሻݐሺܨ ൌ ,ሻݐଵሺܨఛሺܥ ,ሻݐଶሺܨ … ,  ሻሻݐሺܨ

ܵሺݐሻ ൌ ሙఛሺܥ ଵܵሺݐሻ, ܵଶሺݐሻ, … ܵሺݐሻሻ 

According to Merton model (1974) if default of firm	ሺ݅ሻ occurs, the values of asset or values of shares cross from 
barrier line of outstanding debt at debt maturity. Default occurred when the firm’s asset value ܸሺݐሻ falls to the 
liability one, ܭሺݐሻ.the time of default is; 

߬ ൌ ൜
ሺܲ											ݐ ܸሺݐሻ  ሻሻݐሺܭ
∞					ܲሺ ܸሺݐሻ  ሻሻݐሺܭ

 

The default probability at time ݐ is 

ሻݐሺܨ ൌ ܲሺ ܸሺݐሻ   ሻሻݐሺܭ

The marginal default probability can be easily computed to be 

ሻݐሺܨ ൌ Φሺ݀ଶሺݐሻሻ 

Then, 

݀ଶሺݐሻ ؔ
ln ൬ ܸሺ0ሻ

ሻݐሺܭ
൰  ൬݉ െ

ଶߪ
2 ൰ ݐ

ݐ√ߪ
 

And ݉is the instantaneous return on assets, which equates the riskless rate ݎ under the risk neutral measure. The 
joint default probability of ݊	assets is 

ሻݐଵሺܨ ൌ ܲ൫ ଵܸሺݐሻ  …,ሻ൯ݐଵሺܭ ܸሺݐሻ  ;ሻݐሺܭ ࣡ሻ ൌ Φோሺെ݀ଶଵሺݐሻ, … ,െ݀ଶሺݐሻሻ 

Where Φோ is the distribution function of a standard normal vector with correlation matrix R. the marginal default 
probabilities is follows 

ሻݐሺܨ ൌ ΦோሺΦିଵ൫ܨଵሺݐሻ൯,… ,Φିଵሺܨሺݐሻሻ) 

To study the effect of different copula on default correlation, we use the following examples of copula (further 
details on these copula can be found in Embrechts et al. (2001)). 

Gaussian copula: 

…,ଵݑோሺܥ , ሻݑ ൌ Φோ
ሺΦିଵሺݑଵሻ, … ,Φିଵሺݑሻሻ 

Where Φோ
 denotes the joint distribution function of the ݊ - variety normal with linear correlation matrix 

ܴ ,andΦିଵthe inverse of the distribution function of the univariate standard normal. 
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A student	ݐcopula: 

ܿ௩,ோሺݑଵ, … , ሻݑ ൌ ௩,ோݐ
 ሺݐ௩ିଵሺݑଵሻ, … ,  ሻሻݑ௩ିଵሺݐ

Where ݐ௩,ோ	is the standardized multivariate Student’s ݐ distribution, withcorrelation matrix ܴ	and	ݒ degrees of 

freedom, While ݐ௩ିଵis the inverse of the corresponding margin. 

Gumbel copula: 

,ଵݑఏሺܥ … , ሻݑ ൌ exp	ሼെሾሺെ log ଵሻఏݑ  ڮ ሺെ log ሻఏሿݑ
ଵ
ఏൗ ሽ 

Whereߠ א ሾ1,∞ሻ. This class of copula is a sub-class of the class of Archimedean copula. According to the Table 1, 
joint default probabilities of two obligors represented through three types of obligors with individual default 
probabilities corresponding to rating classes.as you will see that ݐand Gumbel copula have higher joint default 
probabilities than the Gaussian copula.   

3. Factor Modeling 

The other way to default modeling allows us to switch to the so called product copula. The reduction technique, 
which widely adopted for the assessment of losses in high-dimensional portfolioswith hundreds of obligors (see for 
instance Laurent and Gregory (2003)), is the standard approach of (linear) factorization, or transformation into a 
Bernoulli factor model. 

In the typical portfolio analysis, the vector ܸ	embedded in a factor model, which allows for easy analysis of 
correlation, the typical measure of dependence. We assume that the underlying variables ܸ	are driven by a vector of 
common factors. 

ܸ	 ൌ ܽ



ୀଵ

ܼ  ߪ ,א ݆ ൌ 1,… , ݊								ܼ  ܰሺ0,ሻ 

Where 	is dimensional normal vector, and א	is independent normally distributed random variables. Here ܽis 
obligor ݆	 to factor݅	, i.e. the so-called factor loading and ߪ is volatility of the risk contribution. The default 
indicators ܻሺݐሻof the ݊ obligor are independent Bernoulli variables, with probability: 

ܻሺݐሻ ൌ ൜
1																 ܸ  ܭ
		݁ݏ݅ݓݎ݄݁ݐ								0

 

Where 	ܭis cut-off point for default obligor	݆	. The individual default probabilities are  

ܨ ൌ ܲ൫ ܻ ൌ 1൯ ൌ ܲ൫ ܸ   ,൯ܭ

And the joint default probability is 

ܨ ൌ ܲ൫ ܻ ൌ 1, ܻ ൌ 1൯ ൌ ܲ൫ ܸ  ,ܭ ܸ   .൯ܭ

If we denote by ߩ ൌ ൫ݎݎܥ ܸ, ܸ൯the correlation of the underlying latent variables and by	ߩ
 ൌ ሺݎݎܥ ܻ, ܻሻthe 

default correlation of obligors 	݅	and	݆	, then we obtain the default correlation formula 

ߩ	
 ൌ

ܨ െ ܨܨ

ඥܨܨሺ1 െ ሻሺ1ܨ െ ሻܨ
 

Under assumption above, we obtain the joint default probability 

ܨ ൌ න න ߮൫ݑ, ;ݒ ,ݒ݀ݑ൯݀ߩ

ೕ

ିஶ



ିஶ

 

Where ߮ሺݑ, ;ݒ  .ሻis bivariate normal density with correlation coefficientߩ

4. Simulation Copula Model 

Here, we want to generate portfolios with given marginal and the above copula.We only use Gauss and ݐ െ copula 
case. We are looking for a random sample generation for this mean we obtain the generation of an ݊ -variety normal 
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with liner correlation matrix ܴ, ሺݔଵ,… , ٹሻݔ  ܰሺ0, ܴሻ,to take realizations from a Gaussian copula we simply have to 
transform the marginal: 

 Set ݑ ൌ Φሺݔሻ,							݅ ൌ 1,… . , ݊ 

 ሺݑଵ,… , ٹሻݑ  ோܥ
ீ௨௦௦ 

To generate random varieties from the ݐ	–copula ܥ௩,ோ
௧  we assume the random vector X act the stochastic process 

ܺ ൌ ߤ  ට
ݒ
ܼ
ܻ			ሺ݅݊	݀݅݊݅ݐݑܾ݅ݎݐݏሻ, 

With 

ߤ א Թ,				ܼ	  ߯ఔଶ		ܽ݊݀	ܻ  ܰሺ0,ሻ 

Where Z and Y are independent, and then X is 	ݐఔ  distributed with mean ߤ and covariance matrix ሺ
ఔ

ఔିଶ
∑ሻ. 

weassume	ߥ  2, while the stochastic process is still valid the parameters has to change for	ߥ  2. We will have 

algorithm (this is algorithm in Embrechts et al. (2001)): 

 Set ݔ ൌ ට
ఔ

௭
 

 Set ݑ ൌ ݅				,ሻݔఔሺݐ ൌ 1,… , ݊ 

 ሺݑଵ,… , ٹሻݑ  ఔ,ோܥ
௧ . 

We can replace the ݑ withΦିଵሺݑሻ in order to have multivariate distribution with ݐ	–copula and normal marginal, to 
obtain the ݐ	–copulaܥ௩,ோ

௧ . 

As see the figure 1 represents tree types of observations from a multivariate normal distribution with mean vector mu 
and covariance matrix. The figure 2 shows to computes a scatterplot of a normal sample and in a second plot the 
contour ellipses for mu =# (3, 2) and sigma = # (1,-1.5) ~# (-1.5, 4) with different observations. 

5. Portfolio 

For first simulation exercise, we assume that the underlying variables ܸ	are normally distributed within a single factor 
framework, i.e.  ൌ 1 and ܽଵin the formula as follow: 

ܸ	 ൌ ܽ



ୀଵ

ܼ  ߪ ,א ݆ ൌ 1,… , ݊								 

They are constant and chosen so that the correlation for the underlying latent variables ܸ	 is ߩ ൌ 0.2 (Kiesel et al. 
(1999).note that We use three rating classes, named A,B,C with default probabilities 0.005, 0.05, 0.15 roughly 
corresponding to default probabilities from standard rating classes, Ong (1999). To generate different degrees of tail 
correlation, we link the individual assets together using a Gaussian, a ݐଵ	and a ݐସ-copula. 

The table’s follows represents of the effect tail-dependence has on the high quintiles of highly-rated portfolios, the 
99%-quantile for the ݐସ-copula is more than three-times larger than the corresponding quintile for the Gaussian 
copula. 

The same effect can be observed for lower rated portfolios although not quite with a similar magnitude. 

As expected results in Tables 5, 6, 7 show increase in the quantiles due to the increased correlation within the 
portfolio. However, comparing the three tables we will see that the sensitivity of the portfolio loss quantilesis higher 
with regard to the underlying copula than to the correlation within the portfolio. 

6. Conclusion 

To investigate the riskiness of credit-risky portfolios is one of the big challenging in the finance area. One of an 
important thing for a model of credit-risky portfolios is the dependence structure of the underlying obligors. We 



www.sciedu.ca/ijfr International Journal of Financial Research Vol. 4, No. 1; 2013 

Published by Sciedu Press                       155                           ISSN 1923-4023  E-ISSN 1923-4031 

studied two approaches, a factor structure, and the direct specification of a copula. We generated portfolio default 
distributions and studied the sensitivity of commonly used risk measures with respect to the approach in modeling 
the dependence structure of the portfolio. My simulation results indicate that the degree of tail dependence of the 
underlying copula plays a crucial role as a credit risk, and the copula linking the underlying variables together is of 
crucial importance especially for portfolios of highly rated obligors. 
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Table 1. Copula and default probability 

      copula                                         Default probability 

 Class Aሺൈ 10ିሻ Class Bሺൈ 10ିସሻ Class Cሺൈ 10ିସሻ 

כ ሾെ2ݐሿ6.89              ݊ܽ݅ݏݏݑܽܩ             3.38              52.45

ଵܥ		
௧               46.55             7.88              71.03

ସܥ
௧              134.80             15.35               97.96

Gumbel,							ܥଶ               57.20             14.84               144.56

Gumbel,						ܥସ               270.60             41.84               283.67
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Table 2. Effect of normal copula with default probability 0.005 

Portfolio     Copula      Mean   variance ࢇ ൌ . ૢ ࢇ ൌ . ૢૢ 

A=1000 normal 0.115 0.13391 1 2 

A=500 normal 0.106 0.119 1 1 

A=50 normal 0.18 0.19143 1 2 

B=1000 normal 0.99 1.8277 4 6 

B=500 normal 1.038 1.8442 4 6 

B=50 normal 1.18 2.3955 4 6 

C=1000 normal 3.029 7.0953 8 11 

C=500 normal 2.998 6.9078 8 11 

C=50 normal 3.1 7.3163 9 10 

Table 3. Effect of ݐଵ െ  with default probability 0.05 ݈ܽݑܿ

Portfolio Copula Mean   variance ࢇ ൌ . ૢ ࢇ ൌ . ૢૢ 

A=1000 ݐଵ 0.101 0.26907 1 2 

A=500 ݐଵ 0.098 0.15671 1 2 

A=50 ݐଵ 0.14 0.36776 1 4 

B=1000 ݐଵ 0.963 2.38 4 6 

B=500 ݐଵ 0.994 2.1984 4 6 

B=50 ݐଵ 1.06 2.9147 4 9 

C=1000 ݐଵ 3.008 7.9799 9 11 

C=500 ݐଵ 3.05 7.9474 9 12 

C=50 ݐଵ 3.42 8.9016 9 11 
Table 4. Effect ofݐସ െ  with default probability 0.15 ݈ܽݑܿ

Portfolio Copula Mean   variance ࢇ ൌ . ૢ ࢇ ൌ . ૢૢ 

A=1000 ݐସ 0.088 0.39665 0 2 

A=500 ݐସ 0.084 0.24543 0 2 

A=50 ݐସ 0.22 2.42 0 11 

B=1000 ݐସ 0.924 3.1454 5 9 

B=500 ݐସ 1 3.0261 7 5 

B=50 ݐସ 1.02 3.5302 4 11 

C=1000 ݐସ 2.997 9.5860 10 12 

C=500 ݐସ 3.028 9.0213 9 13 

C=50 ݐସ 3.34 9.2086 9 12 

We assume the second factor, i.e.  ൌ 2 in (4), for a sub-portfolio of 100 obligors increasing the correlation of the 
latent variables ܸ	within the sub-portfolio to 0.5 for this reasoning we want to shows the effects of increased 
correlation within parts of the portfolio; we change the factor loading within parts of the portfolio. 
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Table 5. The effect of correlation cluster with default probability 0.005 

portfolio copula First  
subportfolio

Second
subportfolio

mean variance . ૢ . ૢૢ

A=1000 normal 100 150 1.237 6.8447 5 13 

A=500 normal 50 75 0.6 1.6433 2 7 

A=50 normal 20 30 0.24 0.47184 1 4 

B=1000 normal 100 150 12.723 204.41 41 71 

B=500 normal 50 75 6.198 47.951 20 33 

B=50 normal 20 30 2.58 7.3506 10 11 

C=1000 normal 100 150 37.972 871.43 96 132 

C=500 normal 50 75 18.832 200.1 49 63 

C=50 normal 20 30 7.74 30.36 20 23 

Table 6. Tthe effect of correlation cluster with default probability 0.05 

portfolio copula First  
subportfolio

Second
subportfolio 

mean variance . ૢ . ૢૢ

A=1000    ݐଵ 100 150 1.451 27.335 7 28 

A=500 ݐଵ 50 75 0.644 6.7668 3 11 

A=50 ݐଵ 20 30 0.2 0.32653 1 3 

B=1000 ݐଵ 100 150 11.76 299.29 52 83 

B=500 ݐଵ 50 75 6.28 85.605 24 44 

B=50 ݐଵ 20 30 2.32 11.365 10 17 

C=1000 ݐଵ 100 150 38.24 1104.7 105 148 

C=500 ݐଵ 50 75 18.638 263.7 52 75 

C=50 ݐଵ 20 30 7.5 31.235 17 24 

Table 7. The effect of correlation cluster with default probability 0.15 

portfolio copula First  
subportfolio

Second
subportfolio 

mean variance . ૢ . ૢૢ

A=1000    ݐସ 100 150 1.635 70.278 7 42 

A=500 ݐସ 50 75 0.682 14.554 3 21 

A=50 ݐସ 20 30 0.36 2.1943 1 10 

B=1000 ݐସ 100 150 13.385 592.25 65 128 

B=500 ݐସ 50 75 6.266 132.82 28 61 

B=50 ݐସ 20 30 2.26 16.074 13 18 

C=1000 ݐସ 100 150 38.465 1395 117 157 

C=500 ݐସ 50 75 18.676 331.96 56 80 

C=50 ݐସ 20 30 7.56 41.109 23 27 
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