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Abstract 

This paper provides risky closeout amount in computing counterparty credit risk. Under this closeout, we obtain a new 
nonlinear PDE model describing the value of a standard interest swap with counterparty credit risk in the reduced form 
framework, thus get a new method to calculate counterparty credit valuation adjustment. We solve the nonlinear PDE by 
iterations numerically and prove the convergence of this approach. By numerical examples, we show the difference 
between risky closeout and conventional closeout in estimating counterparty credit risk. 

Keywords: Counterparty credit risk, Counterparty credit valuation adjustment, Interest swap, Nonlinear PDE. 
1. Introduction 

“The counterparty credit risk (CCR) is defined as the risk that the counterparty to a transaction could default before the 
final settlement of the transaction’s cash flow. An economic loss would occur if the transactions or portfolio of the 
transactions with the counterparty has a positive economic value at the time of default.”(Basel П, AnnexIV, 2/A). 

The sub-prime crisis has highlighted the importance of CCR in OTC derivative markets. This topic has already received 
a lot of attention in many papers published recently. To quote but a few: Brigo and Pallavicini [5] consider CCR with the 
reduced form approach and analyze the correlation between the hazard rate and interest rate. Brigo and Copponi [3] 
extend the work on the unilateral CCR. Leung and Kwok [15] take an intensity contagion model into account and 
provide the insight on how CCR influences the swap rate in a CDS. Lipton and Sepp [13] develop the structural 
approach with the value of the underlying asset with a jump diffusion process. Hui Li [11] focuses on a CDS with a 
stochastic recovery rate. 

All papers mentioned above tried to describe the relation between wrong way risk and CCR or that between 
macroeconomic variables and CCR. However, a major issue, which is how to compute the closeout amount in estimation 
of CCR, is seldom mentioned (Note 1). The closeout amount is the net present value of the residual deal which is 
computed when one party defaults, and that is used for default settlement. We point out that most of existing literature 
assumes that, at the moment of default, a risk free closeout amount (note 2) will be used. 

Here, we argue that a ‘risky closeout amount’ should be used, which means when a net present value of the residual deal 
is computed, the transaction should be considered as one with CCR. Different from a risk free one, the risky closeout in 
computation is more complicated, but more consistent with the definition of CCR. Thus we expect that the risky 
closeout will be more accurate in calculating counterparty credit valuation adjustment (CVA)—the measurement of 
CCR. 

To support this statement, we look back to the definition of CCR, which implies when the counterparty defaults, there 
will be no effect on the investor if the value of the transaction to the investor’s position is negative. It can be seen that 
the risky closeout coincides with this implication, since the investor will pay the total risky transaction’s value to the 
counterparty in this situation. By contrast, in risk free closeout, when the counterparty defaults and the transaction has 
positive value from the counterparty’s perspective, the investor will pay the risk free value of the transaction, rather than 
the fair value of the defaultable transaction, to the counterparty. Since the risk free value is greater than the fair value 
intuitively, the default makes profit for the counterparty. Therefore, the conventional risk free closeout amount is 
inconsistent with the definition. 
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In this paper, to show how to estimate CCR in risky closeout, we focus on a standard interest swap with CCR. Since the 
swap is interest sensitive, we will establish math model in reduced form approach which can relate interest rates to the 
credit event. 

The paper is structured as follows. In section 2, we first describe the mechanism and cash flows of a standard interest 
swap with CCR under risky closeout. Also the appropriate notation is mentioned. We then derive a general formula for 
pricing the swap with CCR in risky closeout and thus obtain a formula for CVA. In section 3, under reduced form 
framework, we obtain a nonlinear PDE to compute the swap with CCR, thus get a new approach to estimate CVA. In 
section 4, to solve the nonlinear PDE, an iteration method is provided and the convergence of this approach is proved in 
appendix. In section 5, we give numerical examples, in which the difference between CVAs computed in risky closeout 
and risk free closeout is shown. In section 6, we conclude the paper. 

2. General Set-up 

2.1 Cash flows 

A standard interest swap involves two entities: one party (the investor) paying interest at a floating rate, the other (the 
counterparty) at a fixed rate. The principal is notional in the sense that it is never paid by either party; it is merely used to 
determine the magnitudes of the payments. The issue of counterparty risk on a standard swap is: 

 Primarily, the fact that the investor may fail to pay the floating rate 

 Also the symmetric concern that the counterparty may fail to pay the fixed rate. 
In this paper, we focus on ‘unilateral CCR’, namely, the risk corresponding to the second bullet point above. 

Let us fix a period and a set of dates ,1,...,2,1,0,  NjjT j  , considering a defaultable standard swap with 
payment dates

121 ,..., NTTT on a notional principle 1. At each
jT , the investor receives k , the simple interest accrued 

on a principal of 1 over interval of length at an annual rate of k , and the counterparty receives
1jL , the simple 

annualized interest rate fixed at
1jT for the interval ],[ 1 jj TT 

. The exchange of payments terminates at the 
counterparty’s default time or the transaction’s maturity )( 1 NTT , whichever comes first. 

Let us denote by R the recovery rate of the counterparty, supposed to be constant in this paper, a fair value V of the 

defaultable contract is computed at time . If this value (from the perspective of the investor) is positive, the 

counterparty is assumed to pay to the investor RV , whereas the value is negative, V is paid by the investor to the 

counterparty. Therefore, when the counterparty defaults before the maturity, the closeout amount is   VRV . 

Remark 2.1 The conventional closeout amount (risk free closeout amount) computed when the counterparty defaults 

before the maturity is   URU , whereU is the value of a standard interest swap without CCR. We shall see in 

section4, the two kinds of closeouts make considerable difference in practice. 

2.2 pricing 

We introduce a filtered probability space ),}{,,( 0 PGG tt  to describe the uncertainty of the market. The 

filtration 0}{ tG represents the flow of information of the market. P is risk neutral measure 

on )( tGG  . is tG -stopping time. We follow the usual assumption for tG , namely ttt FHG  , 

where },{ tsIH st   and 0}{ ttF contains available market information which is generated by a certain (some) 

stochastic process (processes). All the cash flows and prices are considered from the perspective of the investor. In view 

of the description of the cash flows in subsection 2.1, we have 

Definition 0 The value of a standard interest swap with CCR is given by.                                                   

]|)([]|)1([]|[
1

111

1
t

dr

TT

N

ij
t

dr

TtT

dr

T GVRVeIEGeIEGIekEV iT

Ni

NT

iT

ij

NT

iT

i




















 


















          

 (2.1) 

The first term is the value of fixed interest rates receiving by the investor. The second term corresponds to the value of 
floating rates paying by her. The final term measures the value of the risky closeout amount when the counterparty 
defaults before the maturity. If we replace    VRV by    URU , whereU is the swap value without CCR, the risk 
free closeout is applied. 
In the rest of the paper, for simplicity, we assume that the floating rates and fixed rates are paid continuously. We have 

the continuous form of the definition 0. 
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Definition 1 The value of the swap with CCR is.                                                                       

]|)([]|)1([]|[ t

dr

Ttt

dr

ttts

T

t

dr

t GVRVeIEGeIEGdsIkeEV t

T

t

s

t 












 














              (2.2) 

Let 1)( p , we have 

Definition 2 The value of the swap without CCR is 
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To compute the price of CCR, we have 

Definition 3 As the price of counterparty credit risk, the counterparty credit valuation adjustment (CVA ) is given by 

ttt VUCVA 
                                                                           (2.4) 

3. Nonlinear PDE Model under Reduced Form Framework 

3.1 Reduced form models 

In reduced form models, the default event is specified in terms of an exogenous stochastic process—a hazard rate. The 

specification of the stochastic process is flexible so that the time of default can be related to some economic variables. 

Since a standard interest swap is sensitive to interest, reduced form models are used in this paper. 
We assume that the hazard rate

t is satisfied with 
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t is nonnegative tF progressively stochastic process. 

Under the above assumption, we have 

Theorem 3.1 The value of the swap with CCR under reduced form framework can be presented as                                                               
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The proof is shown in appendix A. 

3.2 Nonlinear PDE model 

We denote economic variables which are correlated to the counterparty credit risk by 

),...,,( 21 n
tttt XXXX  , that is, ),( tsXF st  . The process

tX is a diffusion process following the stochastic 

differential equation 

tttt dWtXdttXdX ),(),(   , DxX 0 .                                                                                                (3.3) 

With an m -dimensional Brownian motion m
t RW  and function nRDT ],0[: , 

mn RRDT ],0[: , where D is a domain in nR . 

Using Feynman-Kac formula, we can obtain from (3.2) thatV satisfies the following PDE:                                                                         

),0[),()()()(
2

1
2

2

,
, TDtXVVRkrVr

X

V

XX

V

t

V

i i
i

jiji
ji

T 









           (3.4) 
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Let 0 , we have the PDE which the risk swapU satisfies: 
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3.3 A model with CIR interest rates 

As mentioned in the introduction, interest rates play an important role in valuation of the CVA or CCR in a standard 

interest swap. If interest rates are supposed to be constant, the swap is meaningless. We assume that the interest rates 

follow CIR model 

ttt dWrdtrdr   )(                                                                                                     (3.8) 

With the Feller condition 
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where  ,, are positive constant parameters. The parameter corresponds to the speed of adjustment, to the mean 

and to volatility. Under (3.9), tr is a positive process. 

Since the counterparty with CCR is the entity receiving a floating rate, we suppose that the hazard rate of her is 

negatively correlated to the interest rate. Thus, for the sake of simplicity, we assume that the hazard rate is of the 

form b
cr

a



 , where 0,, cba . Then, the PDE (3.4), (3.5) and (3.6), (3.7) on ),0[),0(),( Ttr  can be 

rewritten as 
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Remark 3.1 Equations (3.10) and (3.12) are degenerate on 0r . Since 22   , according to Fichera’s theory [9], we 

can not impose any boundary conditions on 0r . Therefore, the above Cauchy terminal problems (3.10), (3.11) and 

(3.12), (3.13) are well-posed. 

4. Iteration approaches 

PDE (3.12) is a linear equation, therefore many numerical methods can be applied to it, no matter whether we can obtain 

the analytical solution. However, PDE (3.10) is a nonlinear equation. Due to the nonlinearity, it is difficult to obtain its 

solution even though by the numerical approach. Motivated by the contraction mapping principle, we will have an 

iteration approach which satisfies: 

 We can obtain the solution (numerical or analytical) step by step by solving a linear PDE. 

 The iteration has to converge to the solution of (3.10). 
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We denote the iteration result of step )0(i by
iV . 

When 0i , we obtain
0V by solving (3.12) and (3.13), that is UV 0

. When 1 ni , we obtain
1nV by solving the 

following PDE 
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where
nV has been obtained in last iteration step. 

Remark 4.1 in the iteration steps, we can see that the value of the swap with CCR in risk free closeout is the result of the 

iterations’ first step, i.e.
1V is the swap’s value in risk free closeout. Thus, considering the definition of CVA in section 2, 

the CVA computed in conventional closeout is the first order approximation of the CVA in risky closeout. 

To prove the convergence of the iteration, we have 
Theorem 4.1 Sequence

0}{ nnV is monotonically decreasing. 

Theorem 4.2 The iterations converge to the solution of (3.10), that is 
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The proofs of theorem 4.1 and 4.2 are shown in appendix B. 

Remark 4.2 Since the CVA in risk free closeout is the first order approximation of the CVA in risky closeout, considering 

theorem 4.1, we have that the computation in conventional closeout underestimates the counterparty credit risk. 

5. Numerical results 

In this section, we will present numerical examples for pricing CVA by the iterations provided in section 4. The PDE in 

each iteration is solved numerically by Crank—Nicolson finite difference scheme. By the results, we try to achieve the 

following aims: 

 Showing the impact of interest rates on CVA; 

 Revealing the convergence of the iteration approach; 

 Presenting the difference between CVAs computed in risky and risk free closeouts. 

The parameters in the all figures are shown as follows: 

.1.0,08.0,15.0,05.0,001.0,05.0,05.0,4.0,3 1  kcbaRT

 <Figure 1 about here> 
In figure 1, we try to analyze the relation between the CVA and interest rates. 

The figure shows that the CVA of a standard interest swap with CCR is negatively correlated to interest rates. When 
interest falls down, the counterparty receiving a floating rate is inclined to default, thus the investor is subject to 
relatively serious CCR. 

<Figure 2 about here> 

In figure 2, the convergence of the iterations provided in section 4 is shown. We can see that when the number of the 
iterations is large enough (in this example the number is 5), the results are almost invariant. The speed of convergence is 
fast. 

<Figure 3 about here> 
In figure 3, we can see that the CCR computed in conventional closeout (risk free closeout) is underestimated, compared 
to the CCR in risky closeout. When the CCR is in a high level, the difference is more obvious. 

6. Conclusions 
In this paper, we provide risky closeout amount in estimating counterparty credit risk. With this new type of closeout, we 
establish a nonlinear PDE model for pricing CVA in a standard interest swap with CCR under reduced form framework. 
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To solve the nonlinear PDE, we provide an iteration approach and prove the validity of the method. In the iteration 
procedure, we can see that the CVA computed in risk free closeout, which is usually applied in past papers, is the first 
order approximation of the CVA in risky closeout, and thus underestimates the CVA. 
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Notes 

Note1. Besides our work, Brigo and Morrini (2010) have focused on closeout amount. They provide a ‘substitution 

closeout’ to replace conventional closeout amount. 

Note2. A risk free closeout amount is a net present value that assumes that the defaulted transaction is without CCR. 

Note3. It can be seen that the Feller condition (3.9) is essential to our proof. 

Note4. || || sup | |    
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Figure 1 CVA with interest rates 
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Figure 2 Convergence of the iterations 
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Figure 3 Difference between risky closeout and risk free closeout 
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Appendix A proof of theorem 3.1 
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This completes the proof.                                             

       

Appendix B Proofs of theorem 4.1 and 4.2 

Definition B.1  

RxxxRxf  
2)(

 

 

It can be seen that )( xf is monotonically increasing and Lipchitz continuous. 

We suppose ],0[),0( TQ  . 

We let L and
1L be a differential operator defined by 
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Lemma B.1 For )()( 1
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(Note 3). 

And w is non positive on the whole parabolic boundary 

}0,{ TtBr  , }.{},0,{ TtBrTtr   . 

 

By standard argument, we claim 
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For any fixed
100 ),( Qtr  , when B is large enough and is small enough, we obtain

BQtr ),( 00
.  

 Let B 0 , we have 0),( 00 tru for any Qtr ),( 00
. 

Considering vue t  , we have 0),( trv on Q . 
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This completes the proof.                                                                                          
Remark B.1 The lemma shows that without any conditions on the boundary 0r , the maximum principle is still valid 

for equation (3.10)  

 

Proof of theorem 4.1 

We denote 1 nn VV by nI . ( ...3,2,1n ). 

It can be seen that nI is a solution of the following problem
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when 1n , due to 0),(1 trg , according to lemma B.1, we have                                                        

0011  VVI                                                                              (B.8) 

We prove the statement by induction. 

If theorem 4.1 is valid for 1 kn , which means                                                                      

0211   kkk VVI                                                                 (B.9) 

then since f is monotonically increasing, we have
                                                                      

0),( trg k                                                                          (B.10)               

By using lemma B.1, we have
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This completes the proof.                                                                               

Proof of theorem 4.2 

Introduce the transformation                                                                          

VHe t 
                                                                                  (B.12)              
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                                                                                (B.13)
 

Thus nn
t IJe   , where 1 nnn HHJ , ...3,2,1n  
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since 0nI , we have 0nJ . 

Considering (4.1.n) and (4.2.n), we have 
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By the contraction mapping principle,
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This completes the proof.      


