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Abstract 

This study is set out to model and forecast the cryptocurrency market by concentrating on several stylized features of 

cryptocurrencies. The results of this study assert the presence of an inherently nonlinear mean-reverting process, 

leading to the presence of asymmetry in the considered return series. Consequently, nonlinear GARCH-type models 

taking into account distributions of innovations that capture skewness, kurtosis and heavy tails constitute excellent 

tools for modelling returns in cryptocurrencies. Finally, it is found that, given the high volatility dynamics present in 

all cryptocurrencies, correct forecasting could help investors to assess the unique risk-return characteristics of a 

cryptocurrency, thus helping them to allocate their capital. 
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1. Introduction 

Since the introduction of cryptocurrencies to the financial market, many researchers have sought to clarify their 

behaviour. Cryptocurrencies form a secured electronic cash system that enables people to transfer payments online. 

Moreover, they have no intrinsic value (Cheah and Fry, 2015) and do not promise any future payment. Some 

researchers (e.g. Yermack, 2015) do not consider them to be currencies at all, but rather speculative assets. Their 

main distinguishing feature is the absence of any legal and official authority to control cryptocurrency transactions, 

which makes them riskier than other assets in the market. This feature results in a highly volatile market. It means 

that this market has higher average monthly volatility than that for gold or any set of currencies (see, Ciaian et al., 

2016; Dwyer, 2015). 

In spite of its high volatility this market is found by some researchers to offer diversification and benefits for 

investors with short horizon investment plans (Eisl et al., 2015; Brière et al., 2015). Urquhart (2017) also finds price 

clustering at round numbers in cryptocurrencies. A very few studies maintain that persistence in the cryptocurrency 

market could be used as a basis for trading strategies that would make abnormal profits (e.g. Charfeddine and 

Maouchi, 2018; Caporale et al., 2018; Jiang et al., 2018). The seminal studies in this area are by Tiwari et al., 2018 

and by Bariviera, 2017; they provide empirical evidence that returns volatility displays long-memory characteristics. 

Hence, studying the volatility of cryptocurrencies is very important.  

A handful of studies have investigated the topic of cryptocurrencies from two standpoints, volatility and asymmetry. 

The few studies that have begun to examine the volatility, on the one hand, focus mainly on the linear GARCH–type 

models (Glaser et al., 2014; Gronwald, 2014). On the other, various studies have attempted to explain the stylized 

features, such as volatility clustering and the time-varying volatility asymmetric, with financial time series. An 

influential study by Baur and Dimpfl (2018) claims that the asymmetry, in this case, is due to one of the liquidity 

traders who provide liquidity to the market, since they trade for other reasons than to exploit information. In the same 

way, a vast literature accounts for asymmetry using a range of GARCH-type models; this builds on the assumption 

that the errors are normally distributed (for instance, Pichl, and Kaizoji, 2017; Katsiampa, 2017; Balcilar et al., 2017; 

Bariviera, 2017 and its references).  

The debate about cryptocurrency has recently come into prominence again, with many arguing that the normal 

distribution is flawed in that it assumes symmetry (a loss is just as probable as a gain). However, investors are more 

averse to negative shocks resulting from underestimating extreme losses than they are to positive shocks from 



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 11, No. 4; 2020 

Published by Sciedu Press                        347                          ISSN 1923-4023  E-ISSN 1923-4031 

unexpected substantial gains. Consequently, the presence of long-range dependence in the kind of data generating 

process referred to above creates a tendency to inaccuracy in estimating the persistence of volatility. For instance, the 

presence of such level shifts in a return series might appear as increased persistence (Diebold and Inoue, 2001). Very 

little attention, however, has focused on different distributions of innovation. Xiong and Idzorek (2011) and 

Ghalanos (2018) have demonstrated that accounting for the stylized features with a financial time series in return 

modelling and optimization makes a significant impact on decisions to allocate assets, especially when it comes to 

performance during a crisis. Early examples of research comparing the performance of GARCH-type models with 

different distributions of innovation include the work of Chu et al. (2017) in which the authors estimated the 

volatility of seven cryptocurrencies and conclude that the IGARCH (1, 1) model is the most appropriate for 

estimating Bitcoin volatility. Liu and Tsyvinski (2018) find that the Bitcoin returns can be best fitted using the 

GARCH-type model with Student’s t distributed innovations. 

Surprisingly, most of the previous studies of cryptocurrency volatility have used the Bitcoin price or that of a few 

other cryptocurrencies with a single conditional heteroskedasticity model or single innovation distribution, 

specifically in the in-sample modelling framework. Only the study of Ngunyi et al. (2019) has considered 

determining the most appropriate GARCH-type model as well as the best fitting distribution to model the volatility 

of the major cryptocurrencies returns.  

Drawing upon this fact, the present study finds three ways of extending the work of Ngunyi et al. (2019) and related 

research. First, because scrupulous investigations of the nonlinear statistical properties of most cryptocurrencies are, 

to the best of our knowledge, absent from recent works, this paper statistically tests whether nonlinearities 

concerning the time series behaviour of cryptocurrency returns arise because the data generating process is inherently 

a nonlinear mean-reverting process of the STAR type. In this regard, this paper raises the following question: do the 

cryptocurrency returns follow the hypothesis of nonlinear mean reversion? In order to answer this question, we use 

first the non-parametric Triples test of Randles et al. (1980). The advantage of this test with respect to the other 

available inference procedures is its good finite sample properties and its robustness to outliers (see Eubank, 

LaRiccia and Rosenstein, 1992). For robustness, we borrow from the methods described in the financial cycle 

literature and deploy third-order auxiliary regression, as in Luukkonen et al. (1988). Implications from this finding 

show more clearly that adopting the linear GARCH is inadequate to characterize the behaviour of the series under 

review.  

Second, this paper seeks to shed light on the significance of adopting nonlinear (asymmetrical) GARCH-type models 

in terms of different innovations in term distribution and has a more extended time which takes into account Fat tails, 

Excess kurtosis, the Taylor effect and Leverage Effects. These all enable us to investigate which conditional 

heteroskedasticity model can describe the asymmetrical (tail risk) properties of cryptocurrency returns. This raises 

two critical empirical questions: first, does the volatility of cryptocurrency returns display nonlinearity? And, second, 

do positive shocks increase the volatility more than negative shocks? If the previous question can be answered 

positively, how does this asymmetric volatility from past shocks affect the persistence of volatility? 

Finally, in the existing literature, the issue of the forecasting performance of the nonlinear model is still open. 

Consequently, first, a comprehensive out-of-sample comparison is implemented to consider whether using the 

nonlinear GARCH-type models with different distributions of innovation for forecasting leads to essential 

improvements over forecasting with an incorrectly specified linear GARCH-type model. In this regard, we also make 

a comprehensive out-of-sample comparison between these individual nonlinear models and another type of nonlinear 

model such as the Artificial Neural Network (ANN) which has been used successfully to predict the volatility of 

other stock returns.  

The next section describes the procedures and methods used in this investigation. Section 3 presents the estimation 

results. We conclude in section 4. 

2. Empirical Methodology 

Recent advances in methods with GARCH-class models have facilitated the investigation of the stylized features of 

financial data, such as short-memory and long-memory volatility effects and asymmetric leverage effects. The 

impact of these stylized features on returns is a salient feature of such speculative assets as cryptocurrencies. To 

capture the impact of such innovations, so-called nonlinear (asymmetrical) GARCH-type models have been 

proposed (see, Efimova and Serletis, 2014; Corbet and Katsiampa, 2018; among others). The following nonlinear 

GARCH-class models were used in this paper to model and forecast the volatility of selected cryptocurrencies.  

Suppose that a cryptocurrency index returns on a day      and follows a white noise process such as  
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                                     (1) 

and the error term     with the conditional variance of the returns      follows a process taking the form         . 

Glosten et al. (1993) introduced the GJR GARCH (1,1) model to capture the long-lasting impact of a negative shock 

that would possibly cause the asymmetric leverage volatility effect. This model can be expressed as  

  
          

       
       

                                    (2) 

where the dummy    controls the impact of the news (shocks) such that 

{
                       

              
} 

Other types of nonlinear GARCH models may be used to identify both shifts and rotations in the news impact curve, 

where the shift is the main source of asymmetry for small shocks while rotation drives the large shocks. Following 

Hentschel (1995), this family GARCH model can be generally expressed as  

  
               

 (|       |             )
 
      

                    (3) 

where the shape is determined by  , and the parameter   transforms the absolute value functions that are subject to 

rotations and shifts through   and   , respectively. 

In Equation (3), Higgins and Bera (1992) proposed the nonlinear GARCH (NGARCH) model, in which a small 

shock is no different from a large one, i.e.     . The latter indicates that rotations and shifts are zero,       
 . This             can be given the following form:  
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                                (4) 

Another attractive nonlinear model is the one proposed by Engle and Ng (1993), in which the rotation parameter is 

eliminated,      and      . Thus 
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                          (5) 

Ding et al. (1993) present the Asymmetric Power ARCH Model (APARCH) which delivers a general class of 

volatility models that well reveal Fat tails, Excess kurtosis, the Taylor effect, and Leverage Effects. Such a model as 

             can be expressed as follows: 

  
      |    |        

         
                                 (6) 

In Equations (2-6) parameters     and      respectively, measure the persistence and size effect of the shocks on 

volatility. In contrast, the sign effect is given by    . The power term is noted by    . Further, these estimated 

parameters should satisfy the following conditions                                   

Having discussed nonlinear GARCH-class models, it may be helpful now to explain in greater detail the 

distributional behaviour for cryptocurrency optimisation and hedging risk. 

Following the literature in this regard, we assumed that the cryptocurrency index returns exhibit return distributions 

that are skewed from the mean and that have fatter tails (excess kurtosis) than a normal distribution. Consequently, 

accounting for this skewness and excess kurtosis in the modelling and forecasting of returns makes a significant 

impact on asset-allocation decisions. In this study, we distinguished between four selected conditional distributions 

in the selected nonlinear GARCH models.  

The Generalized Error Distribution (henceforward, GED) proposed by Giller (2005) is symmetrical exponential with 

standardised p.d.f. given by 
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According to Equation (7), the distribution is defined by three parameters: the mode of the distribution,  ; the 

dispersion of the distribution defined by  ; and  , which controls the skewness. It is worth noting that the expected 

moment in this distribution functions in all the mentioned parameters and it is thus not obvious how to obtain the 
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standardised form given in Equation (7).     

One of the best-known distributions in breaking down the standardising and estimating density function is the 

Generalised Hyperbolic Distribution (GHYP). This distribution was introduced to finance as a more realistic model 

for returns series in Eberlein (2001), and Eberlein and Prause (2002). This distribution of the Location-Scale Mixture 

of Normal in an N-dimensional random vector   is given as  

                                                  (8) 

The random vector   in Equation (7) follows a Generalised Inverse Gaussian distribution (GIG) IFF; the density of 

the       GH random vector is given by 
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where   and   are N-dimensional vectors,   is a positive definite matrix of order  , and   is an independent 

positive mixing variable. Particular care, however, should be exercised when choosing this GHYP distribution in 

GARCH models, in order to avoid any identification problems resulting from variations in the GIG   parameter.  

Another motivating distribution for modelling asset returns is Johnson's SU-distribution, which is a four-parameter 

family of probability distributions given as 
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3. Estimation Results  

3.1 Data snd Preliminary Analysis  

The dataset consisted of 2016 daily closing prices for the period from 1
st
 June 2014 to 8

th
 December 2019. While 

almost all previous studies in this field have been limited to Bitcoin, our dataset comprised the five cryptocurrencies 

with the largest market capitalization and a sufficient history of data throughout interest, namely; Bitcoin, Ripple 

(XRP), Litecoin (LTC), Monero, and Dash. 

The summary statistics for the price indexes of the daily closing returns of these five cryptocurrencies are presented 

in panel A of Table 1. Panel A shows that the returns are not normally distributed but instead positively skewed in all 

cases (except for Bitcoin). Additionally, the estimated kurtosis was much higher than the value of the normal 

distribution, suggesting an excess kurtosis and, thus, leptokurtic behaviour. The value of the ARCH (p) test 

confirmed the existence of ARCH effects in the return indices that we considered, suggesting the usefulness of 

adopting the GARCH model for conditional variance. Besides, stationarity was guaranteed in the return series, since 

we did not reject the null hypothesis of the KPSS test. 

Furthermore, an interesting finding appears in panel C of Table 1. This is the statistically significant steepness and 

deepness in every case. To be specific, deepness parameters for the time series exhibited negative skewness in 

relation to the mean or trend. These negative signs calculated in levels for the series indicated that the negative 

shocks were deeper than the positive were high. Moreover, the steepness could be seen as a negative skewness in the 

differenced series, which also provided evidence of such asymmetry.  

 

Table 1. Summary statistics 

  Dash Bitcoin Litecoin Monero XRP 

Panel A; Main Statistics 

Std. Dev. 0.029 0.017 0.254 0.032 0.03 

Skewness 1.323 -0.353 0.695 0.673 2.819 

https://en.wikipedia.org/wiki/Probability_distribution
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Kurtosis 17.922 8.486 16.85 8.955 42.345 

Jarque-Bera [0.000] [0.000] [0.000] [0.000] [0.000] 

KPSS 0.388* 0.364* 0.347* 0.298* 0.166* 

Panel B; Correlation Tests 

Breusch-Godfrey test 0.005 0.001 0.004 0.03 0.004 

 
[0.944] [0.973] [0.950] [0.992] [0.948] 

ARCH LM-test -1.009 -1.986 0.801 0.813 1.038 

  [0.000] [0.000] [0.001] [0.003] [0.000] 

Panel C; Triple Test  

Steepness -0.135 -0.416 -0.409 -0.174 -0.208 

 
[0.012] [0.000] [0.000] [0.003] [0.000] 

Deepness -0.198 -0.892 -0.783 -0.545 -0.754 

 
[0.000] [0.000] [0.000] [0.000] [0.000] 

Panel D; Linearity Test  

F-statistic [0.000] [0.000] [0.000] [0.000] [0.000] 

1. Stat. between [], refer to p-values. 2. '*' indicate a (0.01) Sign. Levels. 3. KPSS; is the 

Kwiatkowski-Phillips-Schmidt-Shin test statistic for stationarity. Note The null hypothesis H0: symmetry; 

and alternative asymmetry. Note: The HP filter estimates the trend. P-values presented in []. 

 

As a robustness check, we tested whether the asymmetric time series behaviour of cryptocurrencies rises because the 

data generating process is an inherently nonlinear mean-reverting process. Following the relevant literature (e.g. 

Omay, 2011; Canepa et al., 2019), this could be done by using the LM-test, following Luukkonen et al. (1988). It 

was clear by this time that if it was a valid hypothesis that the return series could have a nonlinear mean-reverting 

process (see, among other, Bahmani-Oskooee et al., 2019), we should expect the series under consideration to be 

nonlinear and to feature more asymmetric cycles. As shown in Panel D of Table 1, the linearity was rejected in all 

cases since the   value was less than 5% and, hence, we accepted the nonlinearity. The latter features of the return 

series can be illustrated in Figure 1. 

 

 

Figure 1. Return series 
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These features of cryptocurrencies are consistent with those referred to in Caporale et al. (2018) and Jiang et al. 

(2018). Therefore, we adopted the nonlinear GARCH models to overcome the existence of asymmetry, excess 

kurtosis, and long-term memory in order to obtain more accurate results. 

3.2 The Nonlinear GARCH Models 

This study considered various conditional heteroskedasticity models and error distributions, leading to a total of 16 

models estimated using a maximum likelihood. A comparison of these models was drawn on the AIC (Akaike 

Information Criterion) and BIC (Bayes Information Criterion) to evaluate these models. Interestingly, specification 

results indicated that even an AR (1) model was not necessary since there was no evidence of autocorrelation in any 

of the cryptocurrency returns under review. 

Similarly, Table 2 presents a comparison of the Information Criterion values from different nonlinear 

GARCH-model specifications (NGARCH, NAGARCH, GJR-GARCH and APARCH) fitted to the five 

cryptocurrencies with the selected innovation distributions. Panel E of Table 2 implies that the NGARCH has a 

GHYP in the case of the Litecoin and XRP, suggesting that these two series have semi-heavy tails (thus introducing 

heavier tails and skewness) and hence are highly prone to the news effect. Surprisingly, however, size shocks had no 

impact, according to NGARCH. Another remarkable outcome was that the semi-heavy tail in the Monero return 

could be best fitted through NAGARCH with a GHYP. Strong evidence of a leptokurtic return series was found in 

case of Bitcoin and Dash, indicating a series with fatter tails that the previous series had. Moreover, the adopted 

APARCH in the case of Dash implies the presence in the observed data of the Taylor effect. 

 

Table 2. The Information criterion for model selection 

  Monero Dash Litecoin XRP Bitcoin 

Panel A; Normally distributed conditional errors 

  AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

NGARCH -2.601 -2.580 -2.899 -2.878 -3.067 -3.046 -3.104 -3.083 -3.945 -3.923 

NAGARCH -2.620 -2.599 -2.893 -2.872 -3.078 -3.057 -3.124 -3.103 -3.938 -3.915 

APARCH -2.614 -2.590 -2.899 -2.874 -3.084 -3.060 -3.125 -3.101 -3.944 -3.920 

GJR-GARCH -2.615 -2.594 -2.892 -2.871 -3.069 -3.048 -3.119 -3.098 -3.936 -3.915 

Panel B; Generalized Error distributed conditional errors  

NGARCH -2.762 -2.738 -3.093 -3.069 -3.630 -3.606 -3.481 -3.457 -4.252 -4.228 

NAGARCH -2.766 -2.742 -3.090 -3.066 -3.623 -3.598 -3.472 -3.448 -4.243 -4.219 

APARCH -2.764 -2.737 -3.092 -3.065 -1.513 -1.486 -1.334 -1.307 4.689 4.717 

GJR-GARCH -2.765 -2.741 -3.090 -3.066 -3.624 -3.600 -3.473 -3.448 -4.243 -4.219 

Panel C; Generalized Hyperbolic distributed conditional errors   

NGARCH -2.774 -2.744 -3.108 -3.078 -3.661 -3.631 -3.499 -3.468 -4.265 -4.235 

NAGARCH -2.777 -2.746 -3.106 -3.076 -3.647 -3.617 -3.486 -3.456 -4.251 -4.221 

APARCH -2.775 -2.742 -3.108 -3.075 -3.661 -3.628 -3.498 -3.465 -4.265 -4.232 

GJR-GARCH -2.776 -2.746 -3.106 -3.076 -3.647 -3.617 -3.486 -3.455 -4.250 -4.220 

Panel D; Generalized Hyperbolic distributed conditional errors 

NGARCH -2.775 -2.748 -3.108 -3.081 -3.672 -3.644 -3.499 -3.472 -4.265 -4.238 

NAGARCH -2.778 -2.751 -3.106 -3.079 -3.650 -3.623 -3.483 -3.456 -4.249 -4.222 

APARCH -2.777 -2.742 -3.109 -3.079 -3.671 -3.641 -3.499 -3.468 -4.265 -4.235 

GJR-GARCH -2.777 -2.750 -3.107 -3.080 -3.651 -3.624 -3.483 -3.456 -4.248 -4.220 

Panel E; Suggested Model  

  NAGARCH - GHYP APARCH - JSU  NGARCH - GHYP NGARCH - GHYP NGARCH - JSU 
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The results obtained from the nonlinear GARCH models (Note 1) are summarised in Panel A of Table 3. We 

computed the robust standard errors to obtain robust inferences about the estimated models. It is apparent from this 

table that all the parameters are significant. Loosely speaking, both     and     guaranteed the non-negativity of 

the conditional variance. Similarly, the parameters of skew and shape (where applicable) were significant.  

Closer inspection of the table shows that the leverage term     is negative in the case of Monero and Bitcoin, 

suggesting an unequal response to market innovations. That is to say; a positive return had less influence on future 

volatility than did negative returns. For the adopted cryptocurrencies, these results are likely to be related to the 

negative correlation between returns and volatility. Surprisingly, an inverted asymmetric effect was found in the case 

of Dash. This effect can be explained by the herding of uninformed investors whenever prices go up and contrarian 

behaviour among informed investors when prices go down. This result is consistent with findings in other studies 

reporting that uninformed or unsophisticated investors are particularly active in these markets (e.g. Baur and Dimpfl, 

2018). 

 

Table 3. Estimation results for APARCH models 

  BITCOIN DASH LITECOIN MONERO STELLAR XRP 

Panel A; Estimated Parameters 

  0.247** 0.259* 0.101** 0.181** 0.291* 0.380* 

 

(0.048) (0.047) (0.013) (0.035) (0.058) (0.047) 

  0.859* 0.779* 0.871* 0.824* 0.740* 0.572* 

 

(0.017) (0.036) (0.015) (0.031) (0.045) (0.040) 

  -0.171** -0.117*** -0.289** -0.124*** -0.245* -0.264* 

 

(0.067) (0.064) (0.099) (0.070) (0.097) (0.056) 

  1.017* 1.275* 1.230* 1.661* 1.059* 1.409* 

 

(0.226) (0.253) (0.267) (0.320) (0.208) (0.236) 

skew 0.930* 1.354* 1.053* 1.069* 1.131* 1.040* 

 

(0.027) (0.397) (0.027) (0.035) (0.036) (0.027) 

shape 2.562* 3.234* 2.083* 3.617* 3.036* 2.346* 

 

(0.192) (0.280) (0.085) (0.347) (0.254) (0.165) 

Panel B; Goodness of Fit 

Information Criteria 

Akaike -5.877 -4.698 -5.344 -4.352 -4.045 -5.095 

Bayes -5.852 -4.676 -5.318 -4.326 -4.025 -5.072 

ARCH LM Tests 

ARCH Lag [3] 9.314 7.870 0.989 17.020 6.194 3.067 

 [0.818] [0.795] [0.893] [0.149] [0.906] [0.899] 

Weighted Ljung-Box Test on Standardized Residuals 

Lag [10] 15.630 9.384 13.603 10.268 10.665 21.220 

 [0.111] [0.496] [0.192] [0.417] [0.384] [0.130] 

Lag [15] 16.956 11.354 15.211 15.053 11.855 27.504 

 [0.322] [0.727] [0.436] [0.448] [0.690] [0.122] 

Lag [20] 20.954 25.928 20.171 19.126 17.780 16.799 

 

[0.400] [0.168] [0.447] [0.514] [0.602] [0.322] 

1. Stat. between [] refer to p-values. 2. Sign. codes: ‘*’ 1%, ‘**’ 5%, ‘***’ 10%. 

 

The validity of these results is supported by the misspecification and goodness of fit tests, as shown in Panel B of 

Table 3. According to the values of the ARCH-LM test and Ljung-Box tests, there was no statistically significant 
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evidence of misspecification. What is striking about the figures in Panel B of this table is that the estimated 

parameters were stable over time since the null hypothesis of zero variance of the error term was seldom rejected. 

These results were further supported by the sign bias testing by Engle and Ng (1993) for misspecification of the 

conditional volatility models, which allowed the impact to be tested of positive and negative shocks on volatility that 

were not predicted by the model. In all cases, the nullity was generally not rejected because there was no evidence 

that the sign of the shocks played an important role in predicting the variable.  

3.3 Forecasting Accuracy of the Nonlinear GARCH Models  

In order to assess the predictive properties of the adopted non-linear GARCH models, we compared the forecasting 

performance offered by these models with the forecasting performance of a free dynamics model. Our example of 

the latter is the Artificial Neural Networks (ANNs) model which has been widely used in forecasting tasks because it 

efficiently handles the uncertainty inherent in a nonlinear time series. Moreover, ANNs is determined by the 

characteristics of the data and thus requires no prior assumption in the model building process (Chen, Leung, & 

Hazem, 2003; Zhang & Min Qi, 2005).  

The model connects a network of three layers of simple processing units by acyclic links, as shown in Figure 2, 

below:  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 

 

These layer between the   input nodes                     and the output      through a   number of hidden 

nodes which can be presented mathematically as follows: 

      ∑   
 
     (     ∑           

 
   )                      (11) 

where the connection weights       and    are the model parameters to be estimated. 

In Equation (11), the activation functions      provide a smooth change in output nodes as the input values change. 

Further, the type of this function is indicated by the situation of the neuron within the network. In our case, the 

logistic is used as in Equation (12) below  

       
 

                           (12) 

For the experiments in the present study, Package ‘nnfor’ in R was used, where the numbers of input and hidden 

nodes of the individual ANN models for the data were investigated 2016 times before we selected the one that 

produced the lowest BIC value. We also excluded the possibility of zero hidden nodes, because in this case, the 

resulting ANN turned out to be merely a linear autoregressive model.  

The forecasts obtained using both approaches were evaluated using several forecasting accuracy tests. These 

comprised Root Mean Squared Error (RMSE), Average Mean Absolute Percentage Error (AMAPE) and Mean 

directional accuracy (MDA). We bore in mind that both RMSE and AMAPE were used to evaluate the forecasting 

value accurately, whereas MDA measures quantitative errors and is used to evaluate the accuracy of forecasts of the 

direction of change.  



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 11, No. 4; 2020 

Published by Sciedu Press                        354                          ISSN 1923-4023  E-ISSN 1923-4031 

Table 4. Forecasting performance of Nonlinear GARCH vs. ANN model 

  Monero Dash Litecoin XRP Bitcoin 

  NAGARCH ANN APARCH ANN NGARCH ANN NGARCH ANN NAGARCH ANN 

1 step 

MS 0.002 0.006 0.003 0.002 0.000 0.001 0.002 0.002 0.001 0.002 

MAE 0.035 0.053 0.034 0.036 0.040 0.043 0.003 0.004 0.021 0.019 

DAC 0.515 0.563 0.535 0.537 0.515 0.521 0.565 0.564 0.523 0.524 

6 steps 

MSE 0.003 0.005 0.003 0.003 0.002 0.002 0.003 0.003 0.001 0.002 

MAE 0.040 0.050 0.032 0.033 0.032 0.033 0.033 0.035 0.025 0.024 

DAC 0.490 0.492 0.465 0.466 0.457 0.466 0.566 0.567 0.534 0.536 

12 steps 

MSE 0.004 0.005 0.003 0.004 0.004 0.004 0.003 0.006 0.001 0.001 

MAE 0.046 0.047 0.034 0.040 0.035 0.037 0.033 0.040 0.021 0.027 

DAC 0.503 0.499 0.475 0.497 0.455 0.492 0.551 0.552 0.543 0.534 

 

Table 4 reports the result of forecasting performance. It is worth noting that the series is split into two subsamples: a 

pre-forecast period (for            ) from which the model was estimated and a forecast period            

    ). Then h-step-ahead forecasts were computed and compared with the pre-forecast period. The forecast period 

under consideration was              days. Panels A, B and C present the h-step-ahead forecasts. It is apparent 

from Table 4 that the different fitted nonlinear GARCH-model specifications with the selected innovation 

distributions produced the smallest amount of error in forecasting compared with the ANN forecasting results. It may 

be the case, therefore, that those fitted nonlinear GARCH-models outperformed the forecasting of the ANN model. 

4. Conclusion  

This paper advocates the dramatic growth in our understanding of modelling and forecasting the cryptocurrency 

market by concentrating on several stylized features of cryptocurrencies, such as Fat tails and Excess Kurtosis, 

Volatility Clustering, Long Memory and Leverage and its effects. To this end, we conducted a three-step 

investigation. In the first step, we tested for potential asymmetric behaviour in the cryptocurrency markets using the 

non-parametric Triples test. For robustness, we test whether such asymmetry occurred because the data generating 

process was inherently a nonlinear mean-reverting process of the STAR type. Drawing upon these results, the second 

step shed light on the significance of adopting nonlinear (asymmetrical) GARCH-type models in terms of different 

innovations and term distributions, together with a more extended time period to investigate which model most 

informatively described the asymmetrical (tail risk) properties of cryptocurrency returns.  

The results of this study are threefold: first, it finds evidence of asymmetry in the return series that it reviewed, in 

which the negative shocks are deeper than the positive are high. Moreover, such asymmetry stems from the 

inherently nonlinear mean-reverting process of the STAR type. Second, this study finds generally that nonlinear 

GARCH-type models taking into account distributions of innovation that capture skewness, kurtosis and heavy tails 

constitute excellent tools in modelling cryptocurrency returns.  
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Note 

Note 1. For space considerations, we present only the results from the Nonlinear models suggested in Table 2. The 

results of other asymmetric GARCH models are available upon request. 


