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Abstract

The best practices execution of the audit is conditioned by the facility with which Decision Support Systems [DSS]
can be created using simple Excel™ programming tools and functionalities. Such DSS can aid in the exclusive
binary triage of the many of the client’s accounts each of which typically has tens of thousands of items into:
{Accounts that may warrant Extended Procedures Testing [EPT]} or {Accounts that may not warrant EPT}. We use
the Newcomb-Benford first-digit-profile as a triage platform to screen client accounts into the above mentioned
exclusive sets. We call this DSS: The Newcomb-Benford Robust Screening:DSS [NBRS:DSS]. We report on the
details of its development & vetting, and illustrate its functionalities using one of the historical Benford Datasets.
The NBRS:DSS employs four account screening platforms each of which has been reported in the literature. The
NBRS:DSS is available from the authors free as a download without restrictions to its use.

Keywords: big-data, FPE screening jeopardy
1. Introduction

In forensic analyses, as well as for account screening in the Planning, Interim-Testing and Substantive Phases of
assurance engagements, data-profiling and benchmarking are the best practices requirements needed to rationalize
the use of extended procedures testing for audits that fall under the purview of the PCAOB. See: Ovaska-Few (2017)
and Appelbaum, Kogan & Vasarhelyi (2017) for an excellent discussion of the critical need for the integration of
technical functionalities in the execution of the audit. This is usually the case as PCAOB audits are, by definition,
audits of firms listed on trading exchanges. Such firms are, in the main, audits in the Big-Data milieu where decision
support is the only practical way to conduct the audit. This theme is also taken up in the Pathways Commission
Report (2014) where extensive coverage was given to the critical need for integrating technology into the delivery of
courses and seminar workshops. In this regard, a must reading is the excellent report of Janvrin & Watson (2017)
who provide a plethora of links and sources to not only accounting datasets but to DSS software download sources
that offer “grass-roots” academic accounting course access to the tool sets that are the standard fare for the best
practice execution of audits. Also see Greenman (2017). To underscore the need to prepare our student charges for
the “brave new e-world” of screening tools and Decision Support Systems [DSS] note should be taken that KPMG,
LLP: Boston: M&A Tax Advisory Services (Note 1) has engaged and utilizes Watson™ the DSS: created by IBM as
has HR Block Tax & Advisor Services (Note 2).

Such data-profiling through DSS-screening is merely the logical extension of the requirement that the auditor use
professional judgment in selecting client accounts for Extended Procedure Testing [EPT]. This EPT-account triage is
often encoded in the Audit Programs used in the certified audits. In this regard, the audit In-Charge will select a set
of sensitive accounts, usually those that impact either the Current Ratio or Cash Flow From Operations, and perform
certain logical and relational tests so as to triage the set of accounts into two preliminary sets: {Interesting and
Justifiable candidates for further EPT} & {Accounts that do not suggest EPT}. Not to belabor the point, but a simple
illustration will provide the motivation for this idea as it pertains to the audit program. One of the audit programs
currently used in the execution of the audit as detailed by: Arens, Elder, Beasley & Hogan (2017, p. 744) offers the
following Cash screening protocol:
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Audit Objective [Balance] Cash in the bank as stated on the reconciliation foots correctly and agrees with the
general ledger (detail tie-in).

Common Tests Prove the bank reconciliation as to additions and subtractions, including all reconciliation items.

To effect such Cash tests, various parameters need to be established. In this regard, the In-Charge determines for
Cash testing the: (1) nature of the discrepancy, (2) magnitude, and (3) frequency of occurrence that would suggest
EPT of: (i) the Cash controls at the Interim-Testing Phase, and (ii) the related balance at the Substantive Phase. This
clearly indicates that the professional judgment of the In-Charge guides this ETP-parameterization regarding the
commitment of audit resources to further investigate issues in the Cash domain.

1.1 Partnering Audit Programs & DSS Data Screening

Audit programs, parameterized using the professional judgment of the auditor, are one of the traditionally accepted
best practices techniques by which the auditor makes the decision to effect EPT and so collect audit evidence.
Another, recently en vogue, is account-screening through data profiling using DSS. Both are recommended in the
best practices execution of the audit; the latter is germane in the Big-Data context where the client may have
thousands of accounts each one of which may have tens of thousands of transactions over the year under audit. This
is to say that data screening is the only practical way to execute the audit in the Big-Data world. The partnering of
Standard Audit Programs and DSS profiling is clearly illustrated in the following graphic:
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Figure 1. Use of Audit Programs and DSS-Screening in the Execution of the Audit

1.2 Summary

Figure 1 indicates the duality of the collection of audit evidence in the execution of the audit. Evidence formed from:

1.) The Standard Audit Programs, such as the Cash protocol discussed above, and

2.) The set of Decision Support Systems [DSS] that provide the IT-processing of the client’s datasets. There are,
of course, a rich set of DSS that are part of the audit-panoply. Gaber & Lusk (2015) have detailed a number
of account data-processing screens such as testing for: Duplicates, Gaps, Rounding, and Transpositions for

the client’s dataset.
This is the point of departure of our study.
2. Pré&is of the Research

The focus of this paper is to detail an account-screening DSS that is best suited to be employed for audits where there
are a large number of accounts with major transaction volume. Following, we will;

1.) Present, en bref, the remarkable observation of Newcomb (1881) and the subsequent investigations effected
by Benford (1938) regarding First Digit Data Profiles,
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2.) Detail four First Digit profiling platforms suggested by Lusk & Halperin (2014a),

3.) Offer a DSS called: the Newcomb-Benford Robust Screening Decision Support System [NBRS:DSS] that is
formed using the data screening platforms offered by Lusk & Halperin (20144, b, d & 2015a) all of which
are individual VBA modules,

4.) Provide information used in the vetting of the NBRS:DSS, and
5.) Offer suggestions for future developments of profile screening.
3. First-Digit Profiling in the Audit: A Long Time Coming
3.1 Newcomb & Benford

The history of the digital profiling is most interesting and is very well detailed by Lusk & Halperin (2014a). As a
very brief synopsis: Newcomb (1881) noticed that the preponderance of logarithmic characterizations of activity in
his research domain was dominated by logarithms that started with 1 and decline systematically to 9 which was the
least frequently used. Newcomb “quipped” that a simple abstraction of this first digit profile trajectory was not
unlike:

P(F(i)) = Log,, (1 + 1/i) for i: 1, --- 9 [EQ1]

For example, “1s” and “2s” may be expected in the following proportion:
P(F(1)) = Log.o (1 + 1/1) = 30.10% [EQ1a]
P(F(2)) = Log,o (1 + 1/2) = 17.61% [EQ1b]

In the next century, Benford (1938) re-discovered Newcomb’s curiosity and took up a detailed empirical
examination of it. Benford provided a set of observations from very diverse activity domains that seemed to fit the
profile sketched out by EQ1. Finally, Hill (1995a, 1995b, 1996, & 1998) is usually given credit for proving that
digital profiles from large datasets which are produced from unconstrained and mixed mathematical manipulations
can be expected to track along with the profile sketched out by EQ1. Also recently, Lusk & Halperin (2015b) report
on the testing of the Hill mixing concepts. This had the obvious implication for DSS-screening in the execution of
the audit—to wit, if the client’s first digit profile for an account under audit diverges from the first digit profile
offered by EQ1 then, this dataset may warrant further EPT.

In this regard, circa the 1990s Benford screens were being used in forensic analyses. Notably, Carslaw (1988),
Christian & Gupta (1993) & Nigrini (1996 & 1999) offer practical forensic examples of the utility offered by the
Newcomb-Benford profile. For example, Nigrini (1999, p.79) observes that:

Is it possible to tell that a number is wrong just by looking at it? In some cases, you bet.
Using Benford's law—a mathematical phenomenon that provides a unique method of data
analysis—CPAs can spot irregularities indicating possible error, fraud, manipulative bias
or processing inefficiency.

3.2 Summary

In the Big-Data milieu that often characterizes PCAOB audits it would be a simple matter to download and pass all
of the client’s large datasets through a DSS-screen to identify where there seems to be variance from the first digit
profile of EQ1. Those datasets that seem to be at variance from the first digit profile [FDP] of EQ1 would be triaged
as candidates for further EPT as suggested in Figure A. Consider now the four FDP-Platforms that are the
NBRS:DSS.

4. The Four Platforms of the Robust Newcomb-Benford Profiler

In the Newcomb-Benford Robust Decision Support System [NBRS:DSS], there are four major computational
functionalities, the aggregate of which, will constitute the inference platform for informing the decision maker
regarding EPT in best practices execution of the certified audit. To be sure, and as suggested above, FDP is just one
of the tools that can be employed in concert with the standard audit programs as well as the many other DSS
functionalities that can be used in screening client accounts to the end of triaging accounts for EPT. Following we
will detail the four screening platforms that constitute the NBRS:DSS and provide an illustrative example for each.

4.1 The Newcomb and Benford Measure: A Simple Screening Platform

Benford is usually given credit for moving Newcomb’s observation into the analytic-milieu. Benford collected a
large number of datasets from disparate sources and profiled them as they aligned with EQ1. This was the launching
moment of digital profiling. A particular work that provided a synthesis and elaboration of the large number datasets
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offered by Benford is that of Lusk & Halperin (2014a) who report the correct mean profile of Benford profiles which
they call: the Benford Practical Profile [BPP]. Using the BPP as the benchmark, Lusk & Halperin (2014a) offer a
screening interval formed around the BPP. They call this the Benford Screening Window [BSW]. Using the BSW,
they found that there was reasonable classification acuity if the more than five of the nine digits were outside the
BSW.

An illustration will be useful at this juncture. The BSW interval around the BPP reported by Lusk & Halperin (2014a
Table I, p.60) is presented in Table 1:

Table 1. The Benford Screening Window [BSW] based upon the BPP

First Digit Array Corrected Means of Lower Benford Upper Benford
Benford Datasets Screening Window Screening Window
BPP [BSW] Value [BSW] Value
Digit 1 0.289 189 0.275 377 0.303 001
Digit 2 0.194 622 0.179 919 0.209 324
Digit 3 0.126 650 0.111 340 0.141 960
Digit 4 0.090 612 0.074 990 0.106 235
Digit 5 0.075 436 0.059 684 0.091 189
Digit 6 0.064 314 0.048 467 0.080 161
Digit 7 0.054 081 0.038 147 0.070 014
Digit 8 0.054 872 0.038 945 0.070 798
Digit 9 0.050 522 0.034 558 0.066 485

These intervals are used to benchmark the FDP from a particular dataset according to the following protocol:

If more than five of the nine first digits are outside the BSW, then the dataset is labeled as Non-Conforming;
otherwise, it is labeled as Conforming.

4.1.1 Hlustrative Example
Consider one of the Benford datasets:

Table 2. Hlustration of the BSW as a profiling tool of the [NBRS:DSS]

First Digits Benford Cost Inclusion

Data* Profile

1 0.324 Not In

2 0.188 In

3 0.101 Not In

4 0.101 In

5 0.098 Not In

6 0.055 In

7 0.047 In

8 0.055 In

9 0.031 Not In

“Benford notes that this is the Cost of Concrete, [CoC] n =741, but gives no further details.

In this case, there is evidence that the Cost of Concrete [CoC] reported by Benford (1938, Table 1, p.553) is a
Conforming dataset as in only four cases is the first digital profile of the CoC out of the BSW interval range and so
this dataset is assumed to be Conforming. This is as expected as the dataset was that collected by Benford as “support”
for his thesis.

4.1.2 Summary

Platform | The first triage platform for the [NBRS:DSS] is the Benford practical profile and the BSW as presented in
Table 1. We note this platform as the Benford Screening Window BSW-platform. It is a very simple and intuitive

Published by Sciedu Press 30 ISSN 1923-4023 E-ISSN 1923-4031



http://ijfr.sciedupress.com International Journal of Financial Research \ol. 8, No. 3; 2017

operational protocol: The dataset under audit consideration will be profiled as to its first digit realizations. This is an
automatic feature of the NBRS:DSS. Triage: If the number of first digits NOT in the BSW is greater than five the
dataset will be labeled as Non-Conforming; otherwise Conforming.

The second platform of the [NBRS:DSS] is one that uses the Chi2 measure for profiling the audit dataset.
4.2 The Chi2 Platform of the NBRS:DSS

As we previewed, screening is driven by the magnitude of the difference between the realization and the expectation
formed by the In-Charge. The expectation can take many forms from the auditor’s professional judgment, analytic
procedure updates from previous years, objective calibrations, such as the BSW, or from assumed statistical
population profiles. In this second platform of the NBRS:DSS, the latter is the fare of choice. In this regard, we have
selected the Chi2 Test as this test is formed from the non-directed numerical magnitude between the Realization and
the Expectation. Consider now the statistical form of the Chi2 inference model.

4.2.1 Overview of the Chi2 Model

The computational form of the Chi2 model is simple, relevant and often successfully employed in profiling. See for
example the paper of Cho & Gaines (2007) where digital profiling using the Chi2 inference model in a forensic
context is well explained and illustrated. Of the two computational forms: The Standard Pearson classification model
that employs the Marginals of the realizations to form the Marginal Expectations or the Benchmark Expectation
where the Realizations are profiled against a proffered Expectation. The more germane of the two in the audit
context is the latter in that it is formed from the professional judgment of the auditor and often has inherently more
variance associated with the estimates under the rejection of the NULL and so is conservative. In the Benchmarked
Expectation version, the Chi2 computation is:

Chi? = ¥7_,[(0; — (BPP;x N))?/((BPP;x N))], df = 8. [EQ2]
Where: 0;is the Observed Number of realizations for the i" digit, BPP; is digit specific Benford Practical

Profile[BPP] as presented in Table 1, and N is the sample size—i.e., the number of items randomly sampled from
the account under audit.

However elegant in its simplicity and relevance to the screening task is EQ2, there is an inferential issue that needs to
be addressed in using the Chi2 as one of the platforms of the NBRS:DSS. Consider this inferential issue next.

4.2.2 Sample Size Anomaly and Inferential Triage Point
Cho & Gaines (2007, p.220), who have explored the Chi2 test as an inferential screen in forensic analyses, note:

“Chi2 tests are very sensitive to sample size, having enormous power for large N, so that
even quite small differences will be statistically significant. This test appears to be too
rigid to assess goodness-of-fit well, especially since the Benford proportions do not
represent a true distribution that one would expect to occur in the limit.”

The Essential FPE-Inferential dilemma: The message or inferential glitch pointed out by Cho & Gaines is that while
the theoretical Chi2 critical value for a particular point in the degrees of freedom zone is a scalar-constant, the Chi2
computed value IS an increasing function of the sample size; the inferential implication is: In using the Chi2 model,
one invites the FPE signaling jeopardy. Simply, no matter how close the Realization is to the Expectation, in a
Cartesian sense, there is a sample size where one may reject the Null of no difference. Lusk & Halperin (2014b,c)
address this issue and have suggested that for the Benford test using EQ2 a sample size in the range of [315 to 440]
seems reasonable to avoid this FPE signaling jeopardy. They note:

The “Goldie-Locks” result—i.e., the result that is “just-right”— is for a Sample Size of
440. In this case the corrected decision for both the Non-Conforming data as for all seven
cases the y* > 15.507 which is the 5% FPE cut-off so the auditor probably will
investigate in all seven cases which is the correct decision; and for all of the Conforming
cases the y* < 11.03 which is the 20% cutoff and so extended procedures would not be
indicated which is the correct decision. The result for the Sample Size of 315 is almost
the same as for the sample size of 440 excepting for the one case presented in Table C
case for the RS In-Kind result for 1985/86 where the y?for the Non-Conforming data is
11.11 which is almost at the 20% cutoff and less than the 90% cut-point of 13.36
suggesting usually that an investigation is not warranted when in fact one such have
investigated.
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There is another inferential issue germane to creating an Alert Signaling system using the Chi2. If one uses the
overall Chi2, which is the sum of the nine individual Chi2 cell-values, then if there were to be one very large Chi2
cell-value that one value may signal an Alert even though most of the other individual Chi2 cell-values were
relatively low. Therefore, for consistency with the other signaling platforms and to avoid the sensitivity of one large
cell value signaling an alert, we will use the nine individual first digit values and the illustrative result of Tamhane &
Dunlop (2000, p.324) that individual Cell Chi2 values that are > 1.0 may warrant analytic attention. This is a
balancing decision as the sum of the individual first digits may all be >1.0 and their sum could be less than the
overall Chi2 significance alert of CHIQU.INV(0,95;8) which is 15.507.

4.2.3 Summary and Illustration of the Chi2 Platform

This then will be the Chi2 Platform for the NBRS:DSS inference triage. The NBRS:DSS computes the Chi2
calculated using EQ2 and if more than 5 are > 1.0, then the data profile will be judged to be Non-Conforming in
nature; otherwise the dataset will be judged to be Conforming.

For example, using the CoC example offered by Benford we find the following:

Table 3. Chi2 Inference Using the Random Sample Blocking Range [315 to 440]

First Digit Benford BPP Cell
Array CoC Projections Values
Digit 1 0.324 0.289 19 1.84
Digit 2 0.188 0.194 62 0.10
Digit 3 0.101 0.126 65 2.29
Digit 4 0.101 0.090 61 0.52
Digit 5 0.098 0.075 44 2.97
Digit 6 0.055 0.064 31 0.59
Digit 7 0.047 0.054 08 0.41
Digit 8 0.055 0.054 87 0.00
Digit 9 0.031 0.050 52 3.32
Totals 440 440 12.04

For example, consider the computation for the first digital profile. In this case, assume that we took a random sample
of 440 from the Benford CoC dataset for which there were 143 items that had “1” as the first digit. In this assumed
case for the 440 items, we find the percentages reported in the Col[Benford CoC]. We also have the BPP as the
fixed expectation-benchmark. Using these values to parameterize EQ2 for the first digit we have:

234.6=[(0; — (BPP,x N))?] = [(143, — (0.289 19, 440))?] [EQ2a]
127.2=(BPP;x N)= (0.289 19,x 440) [EQ2b]
Chi2, = 234.6/127.2 = 1.84 [EQ2c]

In this illustrative case, there are three Chi2 values > 1.0 suggesting that the CoC is a Conforming as expected.
Incidentally, the overall Chi2 is 12.04 and is less than the Chi2-Triage point of 15.507 suggesting also that the
Benford CoC dataset is Conforming.

We have discussed the FPE anomaly or screening jeopardy that is inherent in using the Chi2 as the inference
screening. However, there are many inferential platforms where large sample sizes invite the FPE-anomaly. We
mention this as the next platform in the NBRS:DSS uses the test of sampled proportions in forming the triage. As we
will observe, this platform also requires calibrations in making an inference relative to the triage of an audit dataset.
Consider now this issue and the way that it is addressed in the NBRS:DSS.

4.3 Platform Three: Test of Proportions over the DF Profile

For the Test of Proportion Screen, we tested the difference in the proportion of a particular digit compared to its
expectation where the expectation is given by the BBP. If, over the nine first digits, there were more than five such
tests, the z-calculated [z.,;] of which is individually greater than the 95% non-directional proportional value of 1.96,
then the dataset from which the digital profile has been created is labeled as Non-Conforming; otherwise, it is labeled
as Conforming.
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4.3.1 Details

To form the testing platform for this section of the NBRS:DSS, we will be using the following Nigrini (1996)
parametric equations for the single sample test of proportional differences:

s, = ’(pi)xl\(ll—m) [EQ3]

|[(opi-pi)l - =
N L D) [EQ4]

Si

Where: N is the number of observations in the dataset; op; is the Observed Proportion of digit i in the dataset, p;is

the Expected Proportion of digit i and is taken from the BPP set of expectations, and(ﬁ) is the binary sample

continuity correction; note, for large datasets, the sort of which one finds in the PCAOB audit context, this correction

makes no practical inferential impact. We have used the absolute value as direction is not an issue in the audit
screening context.

As there was for the Chi2 platform, the same FPE screening jeopardy needs to be considered where the inference is
formed around the one sample test of proportions. A simple example may help to illustrate the FPE anomaly issue
that is inherent in using EQs 3 & 4 in screening datasets.

4.3.2 lllustration of the Sample Size Calibration Issue

To demonstrate the signaling problem or the FPE-signaling anomaly that large sample sizes creates, consider the
work of Nigrini (1996) where, in a forensic screening context, he undertook an analysis of Interest Income reported
in Federal Income Tax filings for the year 1988. He found for the first digit of a population sized sample, n = 78,640
that the percentage of data with “1” as the first digit was: 30.59%. Using the BPP as the benchmark of 28.92% or the
Log10 value of 30.10% we find the following as the z., values:

Analysis [30.59% vs. 28.92%]: ze = 7.3 >> 1.96 [EQ3a]
Analysis [30.59% vs. 30.10%]: z.y = 3.0 > 1.96 [EQ3b]

Clear is that in the audit context, there is no meaningful screening difference between the Nigrini sampling result and
either the BBP or the Log10 expectation. The FPE screening anomaly is produced by the population sized sample.
As an interesting result, we gave to the students in our Capstone course in Auditing the two percentages 30.59% and
28.92% and asked the following question: “Given this sampling result of 30.59% and the benchmark of 28.92%,
would you as the audit In-Charge, assign a staffer, being charged to the audit budget, to use Extended Procedures to
investigate this difference.” Of the 73 students over two semesters three students elected to use EPT; that is 95.9%
decided that this difference was not a signal that would warrant the use of audit resources. We agree; the question
was effectively and unarguably rhetorical. To cope with the FPE sampling issue Lusk & Halperin (2014d) have
posed the following functionality:

4.3.3 Summary of the Nigrini Platform Protocol

Using the BPP as the benchmark, the nine non-directed first digits are used to parameterize EQ3 and EQ4 using the
sample size as an iterated variable where the starting value is set at 1. The nine z.s are then computed. Then the
sample size is increased/iterated by a single unit; at each unit-increment the nine z,s are updated. At the point where
the sixth z., achieves a value > 1.96, then the iterations stop. This is called the critical sample size[CSS]. If the CSS >
=1825, then the dataset is labeled as Conforming, otherwise Non-Conforming.

As for the triage value of 1825, this was reported by Lusk & Halperin (2014d) here paraphrased following: They
used a set of datasets reported in the literature as Conforming and another set of Non-Conforming datasets to find the
minimum sample size which best separated/triaged between the Conforming and Non-Conforming datasets. This best
or maximum likelihood point was for a CSS of 1825. In this case then, they indicated that the binary triage is: If the
CSS < 1825 then the likelihood is that the dataset set under examination is Non-Conforming otherwise the dataset is
Conforming.

This triage point is logical and intuitive. For example, if the CSS is small, that is much less than 1825, and only at
that point is the sixth z., > 1.96, then this can only occur if the sampling result produces point estimates that are
relatively different from the BPP value. For the other case, if the CSS is large, that is much more than 1825, and only

Published by Sciedu Press 33 ISSN 1923-4023 E-ISSN 1923-4031



http://ijfr.sciedupress.com International Journal of Financial Research \ol. 8, No. 3; 2017

at that point is the sixth z., > 1.96, then this can only occur if the sampling result produces point estimates that are
relatively close/similar to the BPP value; an excellent illustration of this is the Nigrini example offered above. As
additional empirical confirmation for the Hill (1998) lottery sample where all the proportions are 1/9, the CSS was
127. This means that only a very small sample size was needed to produce a sixth z., to a value > 1.96; this makes
intuitive sense as all the proportions are 1/9 and so are very different than the BPP. In this case, the Hill sample is
likely Non-Conforming in nature. On the other hand, if we used the BPP [Calibrated to 6 decimal places] as the audit
dataset then there will be a sample size that will drive the sixth z, value to be >1,96; in this extreme case, the sample
size iterations finally stopped at: 11 393 686 (Note 3) and as expected this is >> then 1825 as is, in a sense obvious,
Conforming.

4.4 The Cartesian Distance Platform

Previously Lusk & Halperin (2015a) reported on using a simple Cartesian Distance Measure [CDM] for detecting
datasets that may be at variance with the BPP and so of interest in the audit context for making the EPT decision. We
have used their basic CDM-triage platform and enhanced it as a refinement for use in the NBRS:DSS. Following, we
will report on these modifications and also the testing that we did of these modifications.

After we detail the CDM measure of the NBRS:DSS, we will use individual datasets that have been offered in the
literature as Conforming, n= 30, and Non-Conforming, n=26, respecting their first digit profiles. This empirical
benchmark is our surrogate for the lack of a formal inferential base.

4.4.1 The Distance Platforms

There are four independent constructed measures that are Cartesian based that form the triage value for determining
if the particular dataset is Conforming or Non-Conforming. These are:

4.4.1a Mean of the Absolute Difference

MAD = [y ABS[BPP; — C;11/9 [EQ5]
where: BPP; and C; are the values taken from Table 1 for the BPP digit proportion for the i" digit, and the
Client digital proportion from the account sampled respectively, i: 1, - - -, 9.
4.4.1b Median of the Absolute Difference
MJAD = Median: [ABS[BPP; — C;]; ,— — —,ABS[BPP; — C;]s] [EQS6]

4.4.1c 95%Emperical Rule Dispersion referencing de Moivre; 95%ERd
The Empirical Rule [ER] introduced by Abraham de Moivre (1667-1754) [See Hald (p. 21), simply states that: Very
often the distribution of collected empirical observations may be characterized using the Mean and the Standard
Deviation [Sd] as follows:

68% of the observed data usually fall into the interval: [Mean %1Sd],

95% of the observed data usually fall into the interval: [Mean #2Sds], and

99% of the observed data usually fall into the interval: [Mean £3Sds].

Using de Moivre’s remarkable empirical observation, called the Empirical Rule [ER], we will use the following
Range-estimate to form the standard deviation of the absolute value of the difference between the BPP; and the C;.
In fixing the ER-standard deviation, we will use the 95% estimate formed as:

95%ER = Range: [ABS[BPP; — C;], ,— — —, ABS[BPP; — C]5]]/4 [EQT]
Where: the number 4 is the ER-dispersion coefficient for two standard deviations + from the mean for capturing 95%
of the observations.

We have selected this measure of the standard deviation as there are so few observations in the spanning set of the
BPP that one relatively high value will exert, perhaps, too much influence in calibrating the distance measure if we
were to use the sample standard deviation.

4.4.1d The Classic Distance Measure: Euclid-Pythagorean Cord Distance Range
This will be noted as EP and is the root of the summed squared dot product of the vectors BPP with C as follows;
EP = \JE(BPP; — C)?i: [1:9] [EQ8]
Finally, the Mean of the DM: [MDM], for each dataset under audit will be formed as:
MDM=Mean: [MAD; MdAD; 95%ER; EP] [EQ9]
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4.4.2 Calibration of the DSS Distance Measure

Using these four measures that are based upon different calibrations which are different in systemic terms, we took
the Mean of the respective measures for each of the two test datasets: The Conforming Set, n=30 & Non-Conforming,
n=26 and computed the means of MDM for the Conforming Datasets and Non-Conforming Datasets. Finally, we
searched in the interior range of the weighted average of the two means to find a point where there was a balance for
the Classifications and Misclassifications: Conforming scored as Non-Conforming and Non-Conforming scored as
Conforming and Conforming scored as Conforming and Non-Conforming scored as Non-Conforming; these were the
exclusive joint relative risk profiles. At this point, the details of this calibration would be most useful in the
exposition.

To illustrate the way that the distance measure is formed consider the information in Table 4 for Benford’s CoC
dataset. This is, of course, one of the Conforming Datasets and is in the column labeled as CoC.

Table 4. llustration of the Distance Measure for the Benford Death Rate Data Set

First Digits Benford Practical CoC Data ABS of the

Profile Difference
1 0.289 0.324 0.035
2 0.195 0.188 0.007
3 0.127 0.101 0.026
4 0.091 0.101 0.010
5 0.075 0.098 0.023
6 0.064 0.055 0.009
7 0.054 0.047 0.007
8 0.055 0.055 0.000
9 0.051 0.031 0.020

Using the formula above EQs:[4-8], we find, using the BNRS:DSS for the CoC dataset, the following profile for the
MDM:

MDM= Mean: [MAD; MdAD; 95%ER; EP]
MDM= [[0.015 2 + 0.010 + 0.008 8 + 0.055 8]/4] = 0.022 43 [EQ9a]

Now that we have this information for this particular instance, we will need to make the comparison of this particular
dataset to a generalized triage point to make the decision if this dataset is more likely to be Conforming or
Non-Conforming.

4.4.3 The Generalized Triage Point

As indicated above, we used the 30 Conforming Datasets and the 26 Non-Conforming datasets that were reported in
the literature. The MDM-means of these two datasets were: Conforming: [0.022 06] and for the Non-Conforming:
[0.047 53]. This directed difference had a p-value 0.009 76 using the unequal-variance t-test from the Exce/™/2013]
DataAnalysis;AnalysisTools; certainly a strong indication of a directed difference and so rationalizes the rejection of
the Null. We then computed the weighted average of the MDM-means of the Conforming and the Non-Conforming
datasets; we found this to be: 0.033 88. We then iterated this weighted-average mean along a sliding scale while
tracking the four classification possibilities. Our Stopping-Rule was a balance individually between the
Classifications and the Misclassifications: relative to Conforming and Non-Conforming. This balance occurred for a
value of: 0.026 38 where the datasets were classified as follows:

Table 5. Classification of the Datasets Abstracted from the Literature

Triage Classification* Conforming from Non-Conforming
Literature from Literature
Triaged as Conforming 21[70%] 8[31%]
Triaged as Non-Conforming 9 [30%] 18[69%]

*The fifteen point decimal place representation of the triage cut-point number is: 0.026 382 330 574 550
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This triage point seems reasonable in that approximately a 70% success rate in the identification of both Conforming
and Non-Conforming is well above the chance Null-profile. Specifically, the Fisher’s Exact Test for the
non-directional testing case has a p-value < 0.007 and is consistent with a rejection of the Null of Chance. This is a
strong test result for the vetting of the Distance measure triage cut-point and so this will be used in the Distance
Platform of the NBRS:DSS.

4.4.4 Summary

In this case then using the Distance Triage point, the NBRS:DSS makes the full decimal comparison 0.022 43
against 0.026 38; and, as 0.022 43 < 0.026 38 the Benford CoC dataset is labeled as Conforming.

Now that we have examined the four platforms that will be used in the NBRS:DSS let us consider the performance
of the NBRS:DSS.

4.5 The NBRS:DSS: The Functionality in Perspective
4.5.1 Overview of the NBRS:DSS Functionalities

The auditor enters [Paste] the client’s dataset under audit scrutiny into the Front Page of the NBRS:DSS and
launches the NBRS:DSS. Next a UserForm asks the auditor to select a confidence level. The Cl:UserForm has three
choices which affect ONLY: the z-calculation for the Nigrini platform as the other platforms are already calibrated as
detailed previously. The Alert Signal Protocol, i.e., the four the individual signals that suggest EPT investigations
are:

4.5.1a The Benford Platform [Alert Flag]: If the number of instances where the digits of the Dataset under audit are
outside the BSW is > 5.

4.5.1b The Chi2 Platform [Alert Flag]: If the number of cell Chi2 values > 1.0 are > than 5.

4.5.1c The Nigrini Platform [Alert Flag]: If the CSS is < 1825 when the number of digits that have z-values > 1.96 is >
5.

4.5.1d The Distance Platform [Alert Flag]: If the DMD is > 0.026 382 330 574 550.

4.5.2 Confidence Parametrization

The Standard, and recommended, default-choice offered by the Cl:UserForm for the confidence interval is 95%; this
is consistent with the PCAOB’s acceptable risk level of 5%. The other choices are:

4.5.2a For High Risk Audits, the z-screen parameter is set at 99% (2.33); this is a conservative calibration respecting
the FPE as this confidence interval is the widest of the three and so if there are indeed values outside this 99% CI
they are highly indicative of a variance alert and so strongly suggest a Non-Conforming dataset.

4.5.2b The other choice is for Low Risk Audits where the confidence level is pitched at 90% (1.645). Here again this
is conservative respecting the FNE as this confidence interval is the narrowest and so any indications outside this are
suggestive that perhaps the risk level was in fact NOT really Low and gives pause to due diligence reflection.

4.5.3 Pre-Vetting Calibration

The central question is: What is the vetting profile of the NBRS:DSS? To form a reasonable testing dataset, as the
four constituent platforms were formed with the datasets collected by Lusk & Halperin (2014a) and so cannot form
an objective vetting, we took the BPP as the idealization of a Conforming Dataset and iterated it as follows:

The vector[BPP] is noted as: BPP,,,, where the digital values of the 9x1 vector are taken in order from Table 1.
Next, we selected the Lottery Dataset of Hill (1998): Lg,,, where the digital values of this 9x1 vector are uniformly
[1/9]. Dropping the vector index notation, we then formed the directed difference: [ BPP — L ] call this: 4. The
iteration for each of the nine elements was formed as 4/10. Specifically: A/10 has the following values listed in
transposed-order:

\ 0.017 808 \ 0.008 351 | 0.001 554 ‘ -0.002 05 ‘ -0.00357 | -0.004 68 ’ -0.005 7 ’ -0.005 62 ’ -0.006 06

In this case, there are sequential iterations each of which creates a new dataset that moves from the BBP to the Hill
lottery dataset. For example, the first iteration creates the following dataset:
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Table 6. First Vetting Dataset from BPP to the Lottery Dataset

Digits BPP Iterated Data Difference[E-I]
1 0.28919 0.27138 0.01781
2 0.194 62 0.186 27 0.008 35
3 0.126 65 0.12509 0.001 56
4 0.090 61 0.092 66 -0.002 05
5 0.07544 0.079 00 -0.003 56
6 0.064 31 0.068 99 -0.004 68
7 0.054 08 0.059 78 -0.005 70
8 0.054 87 0.060 49 -0.005 62
9 0.050 52 0.056 58 -0.006 06

Checks 1.000 1.000 -0.000

Table 6 shows that each iteration, A/10, just moves each digit systematically from the BPP to the Hill lottery dataset.
This then will be the ideal dataset to vet the NBRS:DSS in that we can form a logical expectation for the vetting
protocol. We will pass the iterated datasets through the NBRS:DSS and record the alert profiles over the iterations
from the BPP, where we proffer that there will be no Alerts, to the Hill Lottery dataset set that is the terminal dataset,
where there should logically be four Alerts. Additionally, we will produce these profile tables for each of the three
confidence levels.

The pre-vetting Alert profile for the NBRS:DSS used all of the 56 dataset that were collected by Lusk & Halperin
(20144a) over their study sets. In this regard, we found that the best likelihood cut point was more than two alerts.
Therefore in this pre-vetting stage, if there are three or four NBRS:DSS alerts this was consistent or suggestive of
Non-Conformity and so that dataset would likely warrant an Extended Procedures examination.

4.5.4 Pre-Vetting Summary

The Alert calibration from the pre-vetting stage is:

4.5.4a If there were {0, 1 or 2} Alerts: The dataset is benchmarked, in a likelihood sense, as Conforming,
4.5.4b If there were {3 or 4} Alerts: The dataset is benchmarked, in a likelihood sense, as Non-Conforming
4.5.5 Vetting Profile

Now that we have an initial calibration for the NBRS:DSS triage, we will offer the vetting-profile for the calibration
effectiveness of the NBRS:DSS. In this regard, we expect that there should be a “smooth” transition from 0 Alerts
for the BPP to 4 Alerts for the Hill Lottery dataset for all three confidence levels. There is a large volume of data in
these various profiles. All of this data is available from the authors. Following we present a simple and consistent
profile Table 7 where: the cells are the number of Alerts the range of which is 4: [0 to 4] from the BPP to the Hill
Lottery dataset. The cells in Columns D & E [Shaded] report the split of the 5" iterated dataset to further indicate the
transitions of the alert profiles.

Table 7. Sensitivity Alert-Profile of the NBRS:DSS over the Three Confidence Levels

BPP A B C D E F G H | J HILL
CL%0 O 0 0 2 3 3 4 4 4 4 4 4
CLS O 0 0 2 4 4 4 4 4 4 4 4
CL99 O 0 0 2 4 4 4 4 4 4 4 4
MEAN 0 0 0 2 3.3 3.3 4 4 4 4 4 4

This profile clearly exhibits the expected alert-profile for a sensitive DSS. Sensitivity, defined as the ability of the
screening tool to differentiate profiles expected to Conform from those expected to be Non-conforming. Further, in
the specificity direction, we proffer that for all three Confidence Levels as well as for each of the four profiling
platforms: Benford[BSW], Chi2, Nigrini & MDM the measures, there should be consistent change in the expected
direction. For example, Table 8 shows the four platforms for the BPP dataset, the average of the four mid-range
iterated dataset, and finally the Hill dataset:
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Table 8. For the 90% Confidence Level: Alert Platforms Offering Specificity Profile

BPP Dataset Mid-Transition Datasets Hill Dataset
Platforms Alert Platforms Alert Platforms Alert
Benford 0/9 Benford 6.5/9 Benford 9/9
Chi2 0/9 Chi2 6.5/9 Chi2 9/9
Nigrini > 40 000 Nigrini 435.75 Nigrini 95
Distance 0.000 422 Distance 0.044 95 Distance 0.09 718

For Table 8 in the specificity direction, there is consistent movement from the BPP to the Hill dataset for all the
elements tested. For example, for the 90% CL and the BPP for the Nigrini platform, the number of iterations needed
to reach six alerts was actually: 8 027 003! This is as expected for the BPP. For the Hill dataset, only 95 iterations
were needed to create the sixth alert. This same profile is found for the other two Confidence Levels. [Information
not shown but available from the authors].

5. Summary and Outlook

5.1 Summary

The NBRS:DSS evaluates and reports the exclusive screening result:

4.6.1a A Non-Conforming dataset where {3 or 4} Alerts are in evidence, or

4.6.1b A Conforming Dataset where {0, 1 or 2} Alerts are in evidence.

We offer that the NBRS:DSS can be simply and effectively employed to provide account triage so that the EPT
decision can be focused on the set of accounts which may likely warrant EPT. Such DSS are essential for audits in
the Big-Data milieu. We offer the NBRS:DSS as a freeware-download without restriction on it use; contact the
authors.

5.2 Outlook

Screening of accounts is fundamental in executing the audit to align with the “best-practices” imperative of the
PCAOB and to partner with the standard Audit Programs used in conducting the audit. Screening is the triage needed
to, insofar as possible, effectively and efficiently use the audit resources. The NBRS:DSS is one of many screening
tools that may aid in this endeavor. The principal benefit of the NBRS:DSS is its robustness dimension. While there
are many screening and software platforms that offer aspects of Newcomb-Benford screening there are none, of
which we are aware, that provide multidimensional profiling such as: (i) an Empirical re-casting of the
Log10-function profile, (ii) Chi2 cell profiling, (iii) test of Proportion profiles over the individual first digits, & (iv) a
Cartesian Distance measure. Viewing audit datasets over these four independent dimensions aids in controlling the
False Positive Error as three or four alerts need to be produced to effect an EPT in the audit context. This is clear if
one looks at Table 7 where there are, here and there, two audit alerts which in a non-robust context would likely
create instigations where they may not have been warranted. Addressing this is, of course, the purpose of robustness
calibration. In the future, it would be most useful to investigate the signaling acuity of the NBRS:DSS vis-avis the
many other screening tools that exist in the audit and forensic context. The complimentary profiles of the NBRS:DSS
with other screening tools, the sort of what are presented in Gaber & Lusk (2015), may enhance the sensitivity and
specificity of the ensemble of these aggregated screening platforms.
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Notes

Note 1.
https://home.kpmg.com/us/en/home/media/press-releases/2016/03/kpmg-announces-agreement-with-ibm-watson-to-
help-deliver-cognitive-powered-insights-.html

Note 2.
https://www.hrblock.com/tax-offices/?otppartnerid=9007 &campaignid=ps_mcm_9007_0207&omnisource=YHO|C
AMPR-B-Brand+Locations-Y-Exact| ADGPArrowhead KWRDH&r%20block%20watson&Keyword D=480839%#/en
/

Note 3. In the interest of execution efficiency of the NBRS:DSS, we set the stopping rule at an iterated sample size
of 40 000.
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