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ABSTRACT

We developed a two-stage approach (ACOLS) combining the ant colony optimization (ACO) algorithm and a 1-opt local search to
solve forest transportation planning problems (FTPPs) considering fixed and variables costs and sediment yields expected to erode
from road surfaces as side constraints. The ACOLS was designed for improving ACO performance and ensure the applicability to
real-world, large-scale FTPPs with multiple time periods. It consists of three major routines: i) least-cost route finding process
from all timber sales simultaneously, ii) two stage search process developed to quickly find feasible (stage I) and high-quality
(stage II) solutions and, iii) 1-opt local search solution refinement to further improve solution quality. The ACOLS was first
applied to a medium-scale hypothetical FTPP on which four cases with increasing level of sediment constraint were considered.
To test for robustness, the ACOLS was then applied to ten different problems instances created basing on the same topology of the
hypothetical FTPP. Lastly, the ACOLS was applied to a real-world, large-scale FTPP considering thousands of roads segments,
hundreds of timber sales, and multiple products and planning periods. Feasible solutions were found for all cases indicating the
usefulness of our approach to provide managers with an efficient tool to address large-scale transportation problems.
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1. INTRODUCTION

Transportation of timber products from harvesting sites to
conversion facilities is the largest cost component of tim-
ber harvesting operations. Forest transportation planning
problems (FTPPs) have traditionally involved finding routes
that minimize log hauling and road construction costs.[1, 2]

FTPPs that consider both variable (log hauling) and fixed
costs (road construction) are a special case of the fixed charge

transportation problem (FCTP), which is known as a NP-hard
combinatorial optimization problem.[3, 4] Mixed-Integer Pro-
gramming (MIP) has been used to optimally solve FCTP
but its application is limited to small- and medium-scale
problems because solution time grows exponentially with
problem size.[4, 5] Large-scale FTPPs have been solved using
several heuristic approaches. Although these approxima-
tion algorithms do not guarantee optimality, they can effi-
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ciently provide high-quality solutions for large and complex
problems in a practical amount of time.[6–8] Examples of ap-
proximation approaches used to solve large-scale FTPPs with
fixed and variable costs include MINCOST,[9] NETCOST,[10]

NETWORK 2000[11] and NETWORK 2001.[12] Although
these approaches have been widely used, their formulations
are set to minimize total transportation costs only and cannot
consider side constraints based on additional attributes of
road segments. Increasing environmental concerns related
to the transport of timber products have introduced negative
impacts such as increased erosion from road surfaces and
its subsequent impact of water quality into FTPPs.[13] These
environmental considerations and requirements introduce
constraints making FTPPs more complex than the traditional
cost minimization problems. A few studies have incorporated
environmental impacts into FTPPs by assigning an environ-
mental cost to potential sediment yields from forest roads
and used NETWORK 2000 to find least-cost routes.[14, 15]

However, it is difficult and arbitrary to assign an economic
value to a negative environmental impact.

Land managers are often asked to address road system is-
sues at a large landscape scale across multiple time periods.
To address this research need, we developed an approach
(ACOLS) combining the ant colony optimization[16] and a
local search method for solving real-world, large-scale, multi-
period FTPP considering fixed and variable costs and sed-
iment constraints. Three major routines were incorporated
into the ACOLS to ensure solution quality and efficiency.
First, the ACOLS simultaneously finds least-cost routes from
all timber sales to the final destination to allow sharing road
segments among individual routes from timber sales to avoid
creating unnecessary circuits between any two nodes in the
transportation network, which reduces fixed costs and sedi-
ment yields. Second, a two-stage process was implemented
to increase the probability of finding feasible and high-quality
solutions efficiently. During stage I, the algorithm only con-
siders sediment yield information on each road segment to
quickly find feasible solutions. During stage II, sediment and
cost information per road segment are considered to select
feasible solutions resulting in least-cost routes. Third, a 1-
opt local search refinement procedure was implemented to
improve solution quality. To evaluate the applicability of the
developed approach, we initially applied the ACOLS to a hy-
pothetical FTPP. Then, the ACOLS was applied to 10 FTPP
instances created using the same FTPP. Finally, we applied
our ACO algorithm to solve a real-world, large-scale FTPP
with multi-periods including thousands of road segments,
hundreds of timber sales locations, ten planning periods and
multiple destination mills. The experimental results show
that ACOLS was able to find feasible solutions for all test

cases.

2. MIP MODEL FORMULATION
As mixed-integer programming can solve moderate-size
problems with reasonable times, it was used on the hypotheti-
cal problem instances in the experiments to compare with the
ACOLS performance. Moreover, the FTPPs with multiple
planning periods, which is studied in this work, can be well
presented using the mixed-integer programming formulation:

Minimize:
f(P,G,E) =

∑
p∈P

∑
g∈G

∑
ij∈E

(V Cij,p × volij,g,p ×Bij,p)

+ (FCij,p × Iij,p)
(1)

Subject to:

∑
ij∈E

(sedij,p ×Bij,p) ≤ SedRctp ∀p ∈ P (2)

volSj,g,p +
∑
ij∈Lj

volij,g,p −
∑
ji∈Lj

volji,g,p = 0

∀j ∈ S,∀g ∈ G,∀p ∈ P
(3)

∑
ij∈Lj

volij,g,p −
∑
ji∈Lj

volji,g,p = 0

∀j ∈ T, ∀g ∈ G,∀p ∈ P
(4)

∑
s ∈ SvolSs,g,p −

∑
ij ∈ Ljvolij,g,p = 0

∀j ∈ D,∀g ∈ G,∀p ∈ P
(5)

M ×Bij,p − (volij,g,p + volji,g,p) ≥ 0
∀ij ∈ E,∀g ∈ G,∀p ∈ P

(6)

∑
p∈P

Bij,p − Iij,p ≥ 0 ∀ij ∈ E (7)

volij,g,p ≥ 0 ∀ij ∈ E,∀g ∈ E,∀p ∈ P (8)

Bij,p, Iij,p ∈ [0, 1] ∀ij ∈ E,∀p ∈ P (9)

where the variables are defined as:

• volij,g,p = timber volume of product g (m3) trans-
ported over the edge ij (edge having vertex i as the
from-vertex and j as the to-vertex) during period p.

• V Cij,p = variable cost per unit of volume (/m3) for
timber transported over edge ij during period p.

• FCij,p = fixed cost ($) for timber transported over
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edge ij during period p.
• sedij,p = amount of sediment (tons) expected to erode

from edge ij during period p due to the traffic of heavy
log-trucks.

• volSs,g,p = timber volume (m3) of product g required
to be transported from timber sale s during period p.

• SedRctp = maximum amount of sediment allowed
for the entire transportation network during period p.

• Bij,p = 1 if there is timber volume of any product
transported over edge ij during period p; 0 otherwise.

• Iij,p = 1 if there is timber volume of any product
transported over the ij edge during period p for the
first time in the planning horizon; 0 otherwise.

and the symbols are defined as:

• E = number of edges in the transportation network.
• V = number of vertices in the transportation network.
• Lj = set of edges having vertex j as a from-or to-

vertex.
• S = set of vertices representing timber sale locations.
• D = set of vertices representing mill destinations.
• T = set of intermediate vertices (representing neither

timber sales nor mills).
• P = number of time period in the planning horizon.
• G = number of timber products.
• M = constant equal or greater than the total timber

volume transported over the planning horizon.

Equation 1 is the objective function to minimize total trans-
portation cost over the planning horizon. The first constraint
set (Equation 2) limits the total amount of sediment (tons) ex-
pected to be produced from the entire transportation network
in each planning period by accounting for sediment yield on
each edge (sedij,p) if traffic of any product exists in period
p. Equations 3-5 are conservation of flow constraints that
ensure all timber volume entering the transportation network
during each period is routed through the network to the desti-
nation mills. Constraint set (Equation 3) ensures that timber
volume enters the network through timber sales S and the
flow will not go back. Constraint set (Equation 4) ensures
that the sum of the volume of each product entering a vertex
j must equal to the sum of the volume leaving that vertex.
Constraint set (Equation 5) ensures that the timber volume
must be transported to the designated mill destinations D.
Constraint set (Equation 6) represents road trigger constraints
to ensure that if there is timber volume of any product trans-
ported over edge ij, in either direction, sediment amount
is accounted. The Equation 6 restricts that the traffic can
only go in one direction over any edge ij thus preventing
the circler routes. Constraint set (Equation 7) also represents

road trigger constraints to ensure that if there is sediment
accounted over edge ij (thus timber volume traffic exists in
either direction) during one or more periods, then the fixed
cost for the edge ij is accounted only the first period traffic
exists. Constraints (Equations 8 and 9) are non-negativity
and binary value constraints of the formulation.

The MIP formulation illustrates that the dimensionality of
the FTPP increases as a function of the size of the trans-
portation network (vertices and edges), number of timber
products, and planning periods. Total number of variables
and constraints in the formulation:

• Total number of variables = 2× E × P × (G+ 1)
• Continuous = 2× E × P ×G
• Binary = 2× E × P
• Total number of constraints = 4× (E × P ) + (V ×
P ×G) + P

• Sediment = P

• Conservation of flow = (V × P ×G)
• Sediment road trigger = (E × P )
• Fixed cost road trigger = (E × P )
• Non-negativity = (E × P )
• Binary value = (E × P )

3. ACOLS
The ACOLS developed in this work follows the general
ACO framework[16, 17] and is specifically designed to solve
constrained FTPP considering fixed and variable costs. Cus-
tomized routines were introduced in the solution finding
procedure for the algorithm performance and solution qual-
ity. A description of the ant traveling mechanism and solu-
tion building process, 1-opt local search solution refinement,
pheromone update, stopping criterion, and a summary of the
optimization process are presented.

3.1 Ant traveling mechanism
A finite number of ants, one placed in each origin vertex
(timber sale location), search for least-cost routes from each
origin vertex to the selected destination vertex (mill location)
in the transportation network. Starting with planning period
one, the first ant is randomly located at an origin vertex, and
finds the least-cost route from the origin to destination vertex
by moving sequentially through adjacent vertices. The sec-
ond ant is then randomly located in a different origin vertex
to find the origin-destination route. Once all ants have found
a route connecting each origin vertex to its selected desti-
nation vertex for the first planning period, ants start finding
origin-destination routes for the second planning period and
so on. An iteration is completed when origin-destination
routes have been found for all periods.
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To focus the route construction process in the feasible so-
lution space and improve solution quality, two stages were
implemented into the ACOLS. During stage I, ants are set
to rapidly find feasible solutions without consideration of
transportation costs. Stage II is set to start after the first
feasible solution is found to ensure both solution feasibility
and quality. Ants select what vertex to visit next based on
a transition probability computed for each adjacent edge,
which is calculated differently for each stage. During stage I,
the transition probability is calculated as follows:

Stage I→ Pij(t) =
(τij)α × (Sed−1

ij )β∑
ik∈Ni

(τik)α × (Sed−1
ik )β

(10)

where Pij(t) is the transition probability with which an ant
selects edge ij during iteration t, Ni is the set of edges hav-
ing vertex i as the from-vertex, α and β are parameters that
control the relative importance of the pheromone trail inten-
sity (τij) and a heuristic value that indicates the desirability
of selecting edge ij. During state I, it is calculated as the
reciprocal of the associated sediment amount on the edge
(Sed−1

ij ). During stage II, the transition probability incorpo-
rates the reciprocal of all three attributes associated to each
edge: fixed cost (converted into a per unit basis), variable
cost, and sediment amount (Equation 11).

Stage II→ Pij(t) =

(τij)α × [λ( FCij

volTij
+ V Cij)−1 + (1− λ)(Sed−1

ij )]β∑
ik∈Ni

(τik)α × [λ( FCik

volTik
+ V Cik)−1 + (1− λ)(Sed−1

ik )]β

(11)

where FCij is the total fixed cost on edge ij, volTij the
total timber volume traveled through edge ij, λ the weight
given to costs per unit of volume, (1−λ) the weight given to
sediment amount, and R the set of origin vertices selecting
edge ij as part of their least-cost route during the previous
iteration.

While constructing a route, if an ant visits a vertex that is
part of a previously constructed origin-destination route with
the same destination vertex, the ant stops and the remaining
of the constructed route is attached to the route being con-
structed. Ants are also restricted from visiting previously

visited vertices to avoid forming infinite cycles. When an ant
is at vertex v and all adjacent vertices have been previously
visited by the ant, the ant moves back to the previous vertex
and marks vertex v as unavailable. This back-tracking pro-
cess continues until vertices become available. This ant travel
mechanism is designed specifically for the FTPP with fixed
and variable costs because sharing road segments among mul-
tiple timber sales is considered desirable from both economic
and environmental perspectives.

3.2 Local search solution refinement
Local search procedures have shown to improve solution
quality for different ACO based algorithms.[18, 19] We im-
plemented a local search in the form of a 1-opt routine
into our algorithm, which looks at each vertex and its ad-
jacent vertices along individual origin-destination routes to
find potential shortcuts that might improve solution quality.
Similar to the calculation of transition probabilities (Equa-
tions 10 and 11), solution quality evaluated in the 1-opt
routine is based only on sediment amount during stage I
and based on all three edge attributes during stage II. For a
given vertex vi forming part of an origin-destination route
(vori → · · · → vi → · · · → vdest), the local search routine
looks at adjacent vertices of vi along the route and evaluates
if eliminating vi from the route and alternatively connecting
vi−1 and vi+1 results in lower costs and sediment amount.

3.3 Pheromone update
Pheromone evaporation is a procedure to avoid a too rapid
convergence towards suboptimal solutions and allows the ex-
ploration of other areas of the solution space. In the ACOLS,
pheromone trail intensity is updated as follows:

τij(t+ 1) = τij(t)× ρ+ ∆τij (12)

The first component is the current pheromone trail inten-
sity on edge ij during iteration t, which is multiplied by
0 ≤ ρ ≤ 1, where (1 − ρ) represents the pheromone evap-
oration rate between iterations t and t + 1. The second
component is the newly added pheromone amount to edge ij
and is calculated consistently with the purpose of obtaining
feasible solutions during stage I (Equation 13), and feasible
and high-quality solutions during stage II (Equation 14).

Stage I→ ∆τij =
{

Q
Sedij

if edge ij is part of the solution

0 otherwise
(13)
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Stage II→ ∆τij =

λ Q

(
F Cij

volTij
+V Cij)

+ (1− λ) Q
Sedij

if edge ij is part of the solution

0 otherwise
(14)

where Q is a constant set to ensure that the amount of
pheromone added to edge ij slightly increases its selection
probability during the next iteration. Based on previous trial
runs, Q was 0.00001 in the experiments.

3.4 Stopping criterion
Three stopping criteria were implemented into the ACOLS
to address stagnation of solution quality and improve com-
puting time. During stage I, the algorithm tracks the number
of consecutive solutions generated, and if a user-defined
maximum number of iterations (Itsed) is exceeded without
finding a feasible solution, the algorithm stops and reports
“no feasible solution found”. During stage II, the algorithm
also tracks the number of consecutive infeasible solutions,
and if it exceeds a user-defined maximum number (Itinfeas),
the algorithm stops and reports the best feasible solution
found. Each time a feasible solution is found, the algorithm
resets the counter to zero. Moreover, the number of consec-
utive unimproved solutions is tracked during stage II, and
if it exceeds a user-defined maximum number (Itfeas), the
algorithm stops and reports the best feasible solution found
so far. For our applications presented in this study, Itsed,
Itinfeas, and Itfeas were all set to 10,000.

3.5 Optimization process
At the end of each iteration, the 1-opt local search routine
is applied to each origin-destination route in each planning
period. The objective function is then computed and the
solution feasibility is evaluated. As aforementioned, at the
beginning of the optimization process during stage I, solu-
tion construction, local search, and solution evaluation are
based on sediment amounts associated to every edge in the
transportation network. If the current solution is better (i.e.,
lower total sediment amount) than the best solution found so
far, the best solution is replaced by the current solution, and
the pheromone is updated also based on the sediment amount
(Equation 13). Stage II starts as soon as a feasible solution is
found, and in this case, solution construction, local search,
and solution evaluation are based on all three attributes (i.e.,
fixed cost, variable cost, and sediment amount) associated
to every edge. Similar to stage I, when the current solution
is better (i.e., lower total transportation cost) than the best
solution found so far, the best solution is replaced, and the
pheromone is updated also based on the three edge attributes
(Equation 14). During both stages, when the current solution
is either infeasible or worse than the best solution found so

far, pheromone update is not performed and a new iteration
starts. The ACOLS continues generating alternative solu-
tions in each iteration until one of the three stopping criteria
is reached, at which point the best solution is reported.

4. ALGORITHM APPLICATION
Similar to most heuristic optimization techniques, the param-
eters of the ACO based algorithms have a significant effect
on algorithm performance and fine tuning their values is re-
quired to ensure high-quality solutions.[20] We conducted a
full factorial search to find the best parameter values using
the single-period, 500-edge hypothetical FTPP that was used
in.[21] After finding the best parameter value for the hypothet-
ical FTPP, the ACOLS was applied to ten different problem
instances[22] to test the robustness in terms of its ability to
consistently find high-quality solutions on different FTPP of
similar size using the same parameter values found for the
original hypothetical problem. Moreover, the ACOLS was
applied to a large-scale, real-world FTPP with multiple plan-
ning periods to illustrate its application under more realistic
settings.

4.1 Parameter setting and hypothetical FTPPs
In the ACOLS, four main parameters influence its per-
formance: the importance of the amount of pheromone
amount (α), the importance of the three edge attributes (β),
pheromone persistence rate (ρ), and the relative importance
of both costs over the sediment amount (λ). A range from 0
to 1 was partitioned into 21 discrete values at a pace of 0.05
for α, β and ρ, and into 11 discrete values at a 0.1 pace for λ
resulting in a total of 101,871 parameter combinations. The
ACOLS was run 10 times for each parameter combination
and the combination producing the highest average solution
quality was selected as the best parameter combination.

As aforementioned, the hypothetical FTPP considers a road
transportation network formed by 500 road segments where
traffic is allowed in both directions (thus 1,000 edges) and
200 vertices. A total volume of 36,500 m3 is to be delivered
from 25 timber sale locations to one mill destination in a sin-
gle planning period. Timber volume per sale location varied
from 1,029 m3 to 1,905 m3. Variable cost, fixed cost, and
sediment yield per edge ranged from $0.01/m3 to $10/m3,
from $0 to $23,000 for road construction and maintenance,
and from 0.4 to 200 tons, respectively. Based on our MIP
formulation (Equations 1-9), this medium-scale problem has
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2,000 variables and 2,201 constraints. We also considered the
four cases with increasing level of sediment constraint. Case
I is a cost minimization problem without sediment constraint,
cases II and III are cost minimization problems subject to
increasing levels of upper-bound sediment constraints, and
case IV is a sediment minimization problem without cost
consideration. The results of cases I and IV provided upper
and lower bounds of sediment yields from the road network,
and thus were used in determining appropriate sediment
constraint values for cases II and III. The parameter search
process described above was conducted on the hypothetical
FTPP for each case to determine if parameter values were
also sensitive to the sediment restriction level.

Moreover, we created a set of ten problem instances on the
same hypothetical road transportation network to test the
robustness of the algorithm performance using the same pa-
rameter values found during the parameter search process.
These problem instances were created by randomly changing
the location of the 25 timber sales (origin vertices) and the
single mill destination in the network. Timber volume of

sale locations and attributes (fixed and variable costs and
sediment amount) on each edge remained the same for all
problem instances. For each problem instance, we also con-
sidered the four cases. As aforementioned, cases I and IV
were solved to obtain lower and upper limits of sediment
constraint values for cases II and III, which were set at one
third and two thirds of the difference between the upper and
lower limits subtracted from the upper limit. Consequently,
the level of sediment constraint increases equally from 0%
(case I) to 33% (case II), to 66% (case III), and to 100% (case
IV).

The ACOLS, as any heuristic optimization algorithms, do not
guarantee solution optimality. Therefore, the best solution
for each case found by the ACOLS using the best parame-
ter values were compared with optimal solutions found by a
commercially available MIP solver. We used CPLEX version
12.5[23] with default optimization setting parameters to solve
all problems to optimality on a desktop computer with four
dual processors at 3.07 GHz and 3.00 GB of RAM.

Figure 1. Study area located in the upper part of Mica Creek watershed in Northern Idaho, USA
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4.2 Real-world large-scale FTPP
The ACOLS was also applied to solve a real-world, large-
scale FTTP considering multiple products, mill destinations,
planning periods, hundreds of timber sale locations, and a
road network formed by thousands of edges and vertices.
The study area is located in the southern portion of the Mica
Creek watershed, part of the St. Joe River basin in northern
Idaho, USA (see Figure 1a). The study area[14] is owned and
managed by Potlatch Forest Holdings, Inc. (Potlatch). In the
study area of 7,070 ha, there were 261 harvest units ranging
from 1.4 to 183.3 ha in size inside which 407 log landing
locations were predetermined for timber harvest according to
harvesting systems (ground-based vs. cable logging) based
on average slope within harvest units (see Figure 1c). Total
length of the road transportation network inside the study
area is 342 km (see Figure 1d); 271 km are existing roads
and 71 km are proposed roads for future access to harvest
units. Existing roads were classified by Potlatch into primary,
secondary, and primitive roads based on road standards such
as width, maximum grades, and design vehicle. The har-
vest schedule provided by Potlatch consisted of expected
harvestable timber volume by product in each harvest unit,
year of harvest, and destination mill. The harvest schedule
included six 5-year planning periods (7, 12, . . . , 27) for the
next 27 years and four 10-year planning periods afterward
up to 75 years (35, . . . , 75). Total harvestable volume from
the 261 harvest units over the 75 year planning horizon is ap-
proximately 422,000 m3 (see Table 1), which was separated
into two products: logs and pulp. St. Maries and Lewiston in
Idaho, located about 45 km and 100 km away from the study
area were selected as the product destinations for logs and
pulp respectively (see Figure 1b). An interest rate of 5% was
considered to calculate discounted transportation costs.

Table 1. Total harvest volume (m3) scheduled to be
delivered by period

 

 

Period Years from present Harvestable volume 

1 7 70,096.7 
2 12 18,967.0 
3 17 140,099.8 
4 22 17,808.7 
5 27 53,630.7 
6 35 41,828.3 
7 45 5,656.7 
8 55 28,022.9 
9 65 25,513.3 
10 75 20,515.6 
Total  422,139.7 

 

The ACOLS was applied to this real-world, large-scale FTPP
considering the four cases mentioned above. Case I mini-
mizes transportation costs for all ten planning periods with-

out a sediment constraint, and case IV minimizes sediment
amount from the entire road network for all periods. The
sediment amount by period resulting from the best solution
found by the ACOLS for case I and the sediment amount by
period from case IV provided the upper and lower limits of
the sediment constraint values for cases II and III. Similar to
the ten problem instances, the sediment constraint level for
each period is set to increase from 0% (case I) to 33% (case
II), to 66% (case III), and to 100% (case IV).

5. RESULTS AND DISCUSSION
Using the best parameter combination found by the search,
the ACOLS was able to find near-optimal solutions for all
test cases of the original hypothetical FTPP and for all cases
in the ten problem instances. Moreover, it was able to find
feasible solutions for all cases of the real-world, large-scale
problem. Results of the parameter search process, objective
function values, and transportation routes of all applications
are presented below.

Table 2. Best combinations of parameter values found by
the full factorial parameter search process for all cases of the
original hypothetical FTPP

 

 

Case ߩ  ߚ  ߙ  λ  
I 0.50 0.4 0.55 1.0 
II 0.50 0.9 0.60 0.7 
III 0.50 0.7 0.65 0.7 
IV 0.45 1.0 0.15 0.0 

 

5.1 Parameter setting and hypothetical FTPPs
The parameter search process performed on the original hy-
pothetical FTPP resulted in a different combination of pa-
rameter values for each of the four cases (see Table 2). This
indicates that fine-tuning of parameter values is necessary to
achieve high-quality solutions not only for different appli-
cations but even when constraint levels change in the same
application. Although previous studies have shown that best
parameter values are application specific,[24, 25] to our knowl-
edge, no studies have examined the relationship between
parameter values and constraint level. Commonly, one pa-
rameter value combination is applied for a given application
regardless of constraint level.

Some best parameter values remained relatively similar
among the four cases while others varied significantly. For
example, the range of α remained between 0.45 (cases I-III)
and 0.5 (case IV) across the four cases, whereas β presented
a large variation among cases and did not seem to correlate
with sediment constraint level. However, when sediment
is considered (cases II-IV), β values became larger than α
values, which indicates that more importance is given to
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the edge attributes (sediment being one of them) than to the
amount of pheromone on the edges. The parameter control-
ling pheromone persistence (ρ) also widely varied among
the cases. The largest ρ values of 0.6-0.65 were selected
for the constrained cases (II and III) where the three edge
attributes are considered. For case I, which includes only
two edge attributes (fixed and variable costs), the value of
ρ decreased slightly to 0.55 and it was the lowest (0.15) for
case IV, which considers only one edge attribute, sediment
amount. These results might indicate higher persistence of

pheromone is required when more attributes are considered.
Lastly, parameter λ presents the largest variability but it di-
rectly correlates with the constraint level. As expected, all
weight (i.e., λ = 1.0) is given to the costs associated with
each edge in the road network when the objective is to mini-
mize total transportation costs. For the sediment constrained
cost minimization cases (II and III) 70% importance is given
to costs on the edges, and all weight is given to the sediment
amount on the edges for the sediment minimization case
(IV).

Table 3. Comparison of objective function values between MIP and ACO solutions for the four cases of the original
hypothetical FTPP

 

 

Case ACOLS (Objective value) Sediment constraint value (tons) MIP (Objective value) Percent difference 
I 1,496,562 N/A 1,496,562 0.00% 
II 1,637,860 2,000 1,585,393 3.31% 
III 2,086,280 1,500 2,008,344 3.88% 
IV 948.6 N/A 948.6 0.00% 

 

The ACOLS solutions for the four cases of the original hypo-
thetical FTPP reported in Table 3 are those obtained from us-
ing the best parameter values found by the exhaustive search
process. CPLEX was able to find optimal solutions for all
cases within a reasonable amount of time. It took approxi-
mately 1 minute for case I, 1.2 hours for case II, 54 hours for

case III, and 48 minutes for case IV. The ACOLS was able to
match the optimal MIP solution found by CPLEX for cases I
and IV and found near-optimal solutions for the constrained
cases with optimality level of 96.70% and 96.12% for cases
II and III, respectively.

Table 4. Objective function value comparisons between MIP and ACO solutions for cases II and III of the ten FTPP
instances

 

 

Instance Case 
ACO objective function  
value ($) 

Sediment constraint (tons) 
MIP objective function  
value ($) 

Percent difference 

1 
 

II 887,719 2,159 878,749 1.02 
III 1,027,550 1,727 981,203 4.72 

2 
 

II 1,416,090 2,490 1,415,960 0.01 
III 1,619,740 1,860 1,563,669 3.59 

3 
 

II 1,055,330 2,254 1,048,768 0.63 
III 1,174,630 1,746 1,170,956 0.31 

4 
 

II 914,972 2,449 910,152 0.53 
III 1,043,763 1,778 1,043,763 0.00 

5 
 

II 1,203,500 2,445 1,181,284 1.88 
III 1,301,920 1,945 1,260,541 3.28 

6 
 

II 1,212,620 2,354 1,208,610 0.33 
III 1,398,950 1,760 1,355,860 3.18 

7 
 

II 1,089,140 2,672 1,066,148 2.16 
III 1,164,660 1,978 1,164,368 0.03 

8 
 

II 1,241,760 2,660 1,229,392 1.01 
III 1,418,220 1,971 1,361,841 4.14 

9 
 

II 1,410,850 2,262 1,378,432 2.35 
III 1,679,540 1,734 1,636,147 2.65 

10 
II 1,403,150 2,342 1,394,355 0.63 
III 1,634,760 1,750 1,628,223 0.40 

Average 
II    1.06 
III    2.23 

Total average     1.64 
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Table 5. Comparison of computing times (sec) for a single
run of the ACO algorithm and the MIP solver for the
constrained cases of problem instances

 

 

Instance 
ACOLS  MIP 

Case II Case III  Case II Case III 

1 434 363 3,254 31,722 
2 263 2,732 62,314 90,973 
3 790 428 3,532 21,893 
4 708 396 4,732 36,385 
5 190 29,051 3,110 149,585 
6 304 8,885 4,344 97,582 
7 905 371 1,333 31,540 
8 371 10,722 8,458 55,516 
9 509 332 1,182 152,629 
10 962 419 7,225 59,597 
Average 544 5,370 9,948 72,742 

 

Results from applying the ACOLS to the ten different prob-
lem instances also show evidence of good algorithm perfor-
mance by consistently providing high-quality solutions. The
ACOLS was able to match seven out of ten optimal MIP
solutions for case I problems and found near-optimal solu-
tions for the remaining three instances (99.9%, 98.25%, and
99.74% optimal for instances 1, 2, and 7, respectively). For
case IV, the ACOLS matched optimal MIP solutions for all

but one problem instance (problem instance 2), which was
99.63% optimal. For the constraints cases, ACOLS solutions
averaged 98.36% optimality (see Table 4). ACOLS solution
quality was slightly better for case II problems compared to
case III because of the more relaxed constraint level. Solution
quality ranged from 97.84% to 99.99% optimal for case II
problems and from 95.28% to 100% optimal for case III prob-
lems. This is expected because as constraint becomes stricter
fewer feasible solutions exist and the algorithm spends more
time evaluating a larger number of infeasible solutions.

Although the ACOLS did not match optimal MIP solutions
for all cases, it was able to find near-optimal solutions for
all constrained hypothetical FTPP in a fraction of the com-
puting time (see Table 5). Time required by the ACOLS
and the CPLEX to solve case II and case III problems
among instances varied from 190 s to 962 s, from 332 s to
29,051 s, from 1,182 s to 62,314 s, and from 21,893 s to
152,629 s. In average, ACOLS solutions were obtained
within 5.5% and 13% of the times required to find opti-
mal solutions using MIP for case II and case III problems,
respectively. Due to the increased complexity of the case III
problems, ACOLS and MIP solution times increased about
10 and 7.5 times, respectively, from those of case II problems.

Table 6. Best ACO solution for the four cases of the real-world, large-scale FTPP
 

 

 Case I Case II Case III Case IV 

Total cost ($) 6,184,763 6,341,404 6,721,262 9,007,215 
Variable cost ($) 5,587,879 5,752,740 6,086,440 8,359,508 
Fixed cost ($) 596,884 588,664 634,822 647,707 
Total sediment (ton) 22,791 18,376 16,636 14,722 
Total road length (km)  285.2 287.6 285.8 286.5 

 

5.2 Real world large-scale FTPP

After applying the ACOLS to solve the real-world, large-
scale FTPP, feasible solutions were found for all four cases.
Total transportation cost increased about 46% from about
$6.2M in case I (cost minimization) to $9.00M in case IV
(sediment minimization) (see Table 6). Sediment amount
decreased about 35% from case I to case IV (22,791 tons
vs. 14,722 tons). For case II, which restricted sediment by
about 19.4% from total sediment amount of the unrestricted
case I (18,376 tons), transportation cost increased 2.5%. For
case III, where sediment was restricted to about 27.0% of
the unrestricted case I (16,636 tons), transportation cost rose
8.7%. These results likely indicate that sediment restriction
level is not proportional to transportation cost increment. Re-
stricting total sediment amount by a given percent results in a
smaller percent increase in costs. Total road length inside the
study area remained relatively similar, ranging from 285.2 to

287.6 km, among solutions for all cases. This is likely be-
cause sediment amount is a function of several road design
factors (road gradient, cut and fill slopes, rock fragment per-
cent on road surface, etc.) not just length. Thus, as sediment
restriction level increases, road segment producing less sed-
iment, not necessarily shorter, are selected. Solution time
varied from 79 hr. to 91 hr. and no clear correlation between
sediment restriction level and solution time was observed
from a single ACOLS run. This might be explained by dy-
namic interactions among the three stopping criteria and
ACOLS’s probabilistic nature.
As aforementioned, sediment restriction per period were set
based on the sediment amount associated to the best found
solution for case I and objective function value by period
for case IV. Table 7 shows transportation cost, associated
sediment amounts, and sediment restriction values (for cases
II and III) by period for the best ACOLS solutions of the four
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cases. As expected, the same pattern of increasing costs and
decreasing sediment amount from case I through case IV can
be observed for each period. For all four cases, transportation
cost for periods one and two are approximately 73% of the
total transportation costs. This may be because proposed

roads need to be constructed to access a large number of
timber sales and transport large timber volume scheduled in
the early periods (see Table 1), which increases both fixed
costs and variable costs.

Table 7. Transportation cost and sediment amount by period associated to the best solution found by the ACO algorithm for
the four cases of the real-world, large-scale FTPP

 

 

Period 

Case I Case II Case III Case IV 

Transportation 

Cost ($) 

Sediment 

(ton) 

Transportation 

Cost ($) 

Sediment 

(ton) 

Constraint 

(ton) 

Transportation 

Cost ($) 

Sediment 

(ton) 

Constraint 

(ton) 

Transportation 

Cost ($) 

Sediment 

(ton) 

1 2,106,900 2,497 2,198,980 2,115 2,163 2,315,270 1,794 1,829 3,104,360 1,495 

2 423,509 1,280 474,734 883 1,133 548,225 907 987 714,324 841 
3 2,448,110 3,818 2,450,510 3,357 3,465 2,595,800 3,080 3,112 3,446,420 2,759 

4 296,260 1,665 283,456 1,240 1,369 287,040 1,056 1,073 403,790 777 
5 480,781 3,520 478,513 2,940 3,186 523,338 2,805 2,852 832,801 2,518 

6 277,646 2,653 298,675 2,058 2,441 294,173 2,060 2,229 326,629 2017 
7 17,260 669 17,568 332 536 17,888 382 402 18,652 269 

8 68,640 2,131 71,696 1,786 1,887 71,545 1,625 1,642 77,447 1,397 
9 45,243 2,863 45,634 2,114 2,357 45,482 1,545 1,852 54,421 1,347 

10 20,410 1,695 21,638 1,550 1,564 22,502 1,382 1,433 28,373 1,301 
Total 6,184,759 22,791 6,341,404 18,375 20,101 6,721,263 16,636 17,411 9,007,217 14,721 

 

Figure 2. Best found ACO solutions showing number of periods each road segment was included in the selected routes
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For each case, the resulting solution involves a set of routes
from sale locations to selected destination mills for each pe-
riod. To avoid showing 40 sets of routes (one for each period
and for each case), we combined routes for all ten periods
into a single map showing the number of periods each road
segment would be in use (see Figure 2). In general, ACOLS
solutions seem relatively similar among all four cases. This
is because timber sale locations are distributed across the
study area (see Figure 1c), and feasible solution must include
routes from all timber sales to mills regardless of restriction
level. However, traffic level for each road segment, in terms
of the number of periods in use, is different among all four
cases. These results are also useful to identify unnecessary
roads, indicating no construction in case of proposed roads
or candidates for decommissioning in case for existing roads.
Although the ACOLS algorithm was able to find feasible
solutions for all four test cases, solution quality could not
be determined for this real-world, large-scale problem be-
cause of the problem size. A MIP formulation would require
199,000 variables and 259,160 constraints, thus MIP solver
was not applied.

ACOLS solution quality was highly sensitive to parameter
values. Thus, high-quality solutions were found only after
conducting a full factorial search. Although the ACOLS
algorithm was empirically proven to consistently provide
high-quality results in this study, the algorithm parameters
used were developed from a complete enumeration proce-
dure conducted on the hypothetical medium-scale FTPP. It
might be impractical to perform a similar search for large
problems. Future work is needed to develop and apply more
sophisticated techniques to efficiently identify best parameter
values to ensure solution quality.

Our ACOLS provides an analytical approach that enables for-
est managers to directly integrate environmental impacts into
the selection of cost efficient routes for timber transport. Al-
though, we considered sediment amount, which could have
a significant effect on stream water quality, our approach
serve as a framework to incorporate additional environmen-
tal concerns into forest transportation planning. Additionally,
the ACOLS’s ability to efficiently obtain near-optimal solu-
tions allows managers to generate alternative transportation

routes and conduct sensitivity analysis to better understand
the effect of sediment constraint levels on total transportation
costs. Lastly, the ACOLS can provide an objective approach
to determine environmental costs associated with restricting
the sediment amount by comparing resulting transportation
costs with the unrestricted case.

6. CONCLUSIONS AND FUTURE WORK

We developed a ACOLS approach to solve large-scale FTPPs
considering fixed and variable costs as well as side con-
straints. The ability to incorporate side constraints into
FTPPs facilitates addressing environmental concerns that
are otherwise difficult to consider with existing tools. Com-
puterized approaches, such as the ACOLS developed in this
study, able to efficiently solve complex, large-scale prob-
lems are needed as land managers often need to address road
network systems and timber transportation issues at a large
landscape scale for multiple time periods under a variety of
management objectives.

The ACOLS was able to match optimal MIP solutions or
find near-optimal solution for all instances and cases of the
hypothetical FTPP. In general, ACOLS solutions were sat-
isfactory, but the optimality slightly decreased as sediment
constraint became stricter. Trade-offs were observed between
total costs of road construction and timber transportation and
total amount of sediment delivery from the road network.

Setting up the appropriate parameters is important to main-
tain high performance of the ACOLS, and such parameters
can vary not only with the size and type of problems, but
also with different constraint levels.[7] The high sensitivity of
the solution quality to algorithm parameter values certainly
poses a limitation of the algorithm. Future research should
develop an intelligent way to identify best parameter values
and also incorporate parallelism into the algorithm to further
improve solution time. The need to address road manage-
ment issues in spatial and temporal context at a large scale
has been increasing as social and environmental demands and
concerns increase around forest resources management.[26]

ACOLS has certainly the potential to provide a useful and
efficient tool to meet such needs.
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