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Abstract  

Stage-gate model for new product development (NPD) and for any research and development (R&D) project consists 
of a series of stages and gates; each stage is a set of research activities and gates are milestones at which decisions 
are made based on predetermined criteria. In this paper we developed a capital budgeting model for a typical 5-stage, 
5-gate process to be used for appraising commercial viability of the NPD at Stage 2 which will serve as one of the 
decision making criterion at Gate 3. Because in an NPD project, completion costs (capital investments), completion 
times, and future cash flows are uncertain, we developed the Pert-Beta probability distribution to encounter for the 
randomness of these variables. Furthermore, we suggested the model can be applied to real case NPD projects with 
the Monte Carlo Simulation approach. We then verified the workability of the model by applying it to a notional 
NPD project and demonstrated that all decision variables reach steady state in the Monte Carlo Simulation 
calculations. 
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1. Introduction 

Stage-gate model for new product development (NPD) and for any research and development (R&D) project consists 
of a series of stages and gates; each stage is a set of research activities and gates are milestones at which decisions 
are made based on predetermined criteria. At one of the gates we must assess if the final outcome of the NPD adds 
value to the firm, rank alternative technology solutions based on the value adding potential and 
technological/financial risks, and select the best alternative technology solution to proceed to development. However, 
given the uncertainties affecting the outcome of an NPD, there is a gap in the literature with regards to modeling 
these uncertainties and developing appropriate probabilistic evaluation metrics. The purpose in this paper, therefore, 
is to develop a probabilistic capital budgeting model for a typical 5-stage, 5-gate process to be used for appraising 
commercial viability of the NPD at Stage 2 which will serve as one of the decision making criterion at Gate 3. 

The rest of this paper is organized as follows. We first present a brief description of the stage-gate approach for new 
product development, followed by review of the literature, and a discussion of PV and NPV analysis in continuous 
time. We will then develop a capital budgeting model for stage-gate process, followed by a proposed probabilistic 
model for incorporating uncertainty, and finally we will demonstrate with a notional project how Monte Carlo 
Simulation method can be used in complicated capital budgeting under uncertainty for NPD projects.  

2. Stage-Gate Approach 

Stage-gate is an approach in project management which funds a project in a sequence of phases based on a set of 
defined criteria for each phase and the information obtained. Stage-gate model is particularly useful for new product 
development (NPD) projects, because NPD projects are inherently risky and funding commitments should initially 
be small and gradually increase as technical and commercial risks are mitigated. Stage-gate model consists of a 
series of stages and gates; each stage is a set of research activities and information gathering whereas gates are 
milestones at which decisions are made based on predetermined criteria.  

3. Literature Review 

Stage-gate model was originally developed in the 1980s, through study of companies that drove successful new 
products to the market (Cooper, 2014) and has been widely recognized and implemented by companies as a method 
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that brings order to the highly uncertain investments in research and development and new product development 
projects. Summarizing the results of the second survey of the Product Development & Management Association’s 
(PDMA’s) on companies’ new product development best practices, Griffin (1997) reported that 60% of respondents 
were using some form of stage-gate methodology in their new product development efforts. More recently, in a study 
conducted for the Institute for Defense Analysis, Atta et al. (2012) interviewed R&D leaders of seven large 
U.S.-based companies: Applied Materials, The Boeing Company, Exxon Mobil Corporation, General Electric, IBM, 
Intel, and Proctor & Gamble and found that “leading firms use rigorous, but specifically designed stage-gate 
processes to manage the cost of failure. The objective is not to prevent failure per se, because that implies lack of 
innovation and exploration of new ideas” (p. v). 

As pointed out in Atta et al. (2012) the number of stages and gates in the stage-gate model can be customized based 
on the project or corporate priorities. In this paper for the sake of exposition we give a brief description of the typical 
stage-gate model as discussed by Cooper (n.d.). We give very brief description of the stage-gate details, as our 
purpose is to provide a capital budgeting model for decision making at a specific gate of the process. The model we 
present is robust and can be applied to any custom-made stage-gate process. A typical 5-stage, 5-gate process as 
outlined in Cooper (n.d.) is as depicted in Figure (1): 

Idea 
Generation 

and 
Discovery

Stage 3
Development

Gate 4
Go to Tsting

Stage 4
Testing and 
Validation

Gate 5
Go to Launch

Stage 5
Launch

Post Launch 
Review

Gate 1
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Stage 2
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Go to 

Development

Figure 1. A Typical 5-Stage 5-Gate Process Flow 

4. The Authors’ Contribution to the Field 

At one of the gates we must assess if the final outcome of the NPD adds value to the firm, rank alternative 
technology solutions based on the value adding potential and technological/financial risks, and select the best 
alternative technology solution to proceed to development. According to Cooper (n.d.) one of the activities in stage 2 
which leads to go to development in Gate 3 is “a detailed business and financial analysis involving a discounted cash 
flow approach (NPV and IRR), complete with sensitivity analysis to look at possible downside risks” (p. 6). 

Our purpose in this paper is, therefore, to develop a probabilistic capital budgeting model to be used for appraising 
commercial viability of the NPD at Stage 2 which will serve as one of the decision making criterion at Gate 3. Only 
capital outlays expected to be incurred after Gate 3 are relevant costs and all costs incurred prior to gate 3 are sunk 
costs and will not affect the appraisal. A project adds value if it has positive expected net present value NPV and its 
ranking is based on its expected profitability index. The NPV is the PV of expected free cash flows (FCF) after the 
new product is launched minus PV of post Gate 3 expected completion costs. The profitability index (PI) defined as 
the ratio of present value (PV) of future free cash flows divided by present value of capital investments (completion 
cost) is a metric similar to return on investment with the difference that it considers time value of money as well as 
financial risk of the project through discounting costs and benefits with a cost of capital commensurate with the risk 
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of the project. In order to develop our model we first give a brief description of present value methodology in 
continuous time as it relates to capital budgeting models. 

5. Present Value Methodology 

Present value of a single amount Ct occurring at time t is given by:  

 
t

t

C
PV

( r )


1
  (1) 

where, r is an appropriate discount rate, also called the cost of capital. 
It can easily be demonstrated that in continuous time Equation 1 can be expressed as; 

 t
rtPV C e    (2) 

When there are multiple amounts occurring, starting at the beginning of time tin the future, and continue occurring at 
the beginning of consecutive equal time intervals for N periods, the total PV of those amounts would be:  
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Where N is the number of time periods involved. 

For the special case where all the future amounts are the same, equal to C, and occur at the beginning of each period 

Equation 3 can be simplified as: 
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Equation 4 can further be simplified as: 
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When we are dealing with unequal amounts occurring in the future, it would be easier for analytical purposes to 
convert those unequal amounts into a constant annual equivalent. That is, to find a constant amount occurring every 
year for the same period of time as the unequal amount such that the present value of unequal stream is the same as 
the present value of the equal stream of monies. This can be established through equating the right-hand-side terms 
of Equation 3 and Equation 5, that is: 
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Solving for C we get: 
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This means the constant amount C occurring (beginning of the year) every year from year t through year t+N has the 
same present value as the unequal amounts Ct, Ct+1…….Ct+N occurring (beginning of the year) over the same time 
period t through t+N.  

In the next section we use Equation 5 and Equation 7 to formulate PV of costs at each stage following Gate 3 and, 
therefore, will formulate PV of completion costs. 

6. Completion Cost and NPV Model 

Total completion costs valued at Gate 3 (investment) is the sum of present values of all the investment outlays 
expected to occur at Stage 3, Stage 4, and Stage 5, That is: 

3 4 5CapitalInvestment PV(CompletionCosts ) PV( Stage Cost ) PV( Stage Costs ) PV( Stage Costs )        (8) 

and, 
 NPV PV FreeCashFlows PV CompletionCosts ( ) ( )  (9) 

Free cash flows (FCC) occur during the new product’s life cycle (from launch to withdrawal). 
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We are not including post launch review costs as part of completion costs, because those costs occur in the 
commercialization phase and will be included in the FCF of the year they occur. To express Equations8and 9 into 
their constituent components we define the following notations: 

C1 = Annual equivalent costs during Stage 3 

N1 = Stage 3 completion time 

C2 = Annual equivalent costs during Stage 4 

N2 = Stage 4 completion time 

C3 = Annual equivalent costs during Stage 5 

N3 = Stage 5 completion time 

FCF = Annual equivalent free cash flows during new product’s life cycle 

N4 = New product’s life cycle 

whereC1, C2,C3, and FCF are calculated using Equation 7. Now using the above notations and applying Equation 5 
to each component of Completion Costs in Equation 8and to PV FreeCashFlows( ) in Equation 9we get: 
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and, therefore: 

 
rNrN rNe e erN r( N N )PV ( CompletionCosts ) C C e C e

r r re e e

          
    

31 2
1 1 2

1 2 3
1 1 1

1 1 1
    (14) 

 

rNer( N N N )
NPV FCFe

re

rNrN rNe e erN r( N N )C C e C e
r r re e e

    


                  

4
1 2 3

31 2
1 1 2

1 2 3

1

1

1 1 1

1 1 1

 (15) 

and, 

 
PV( FreeCashFlows )

PI
PV(CompletionCosts )

                                    (16) 

Equation 14 expresses PV of completion costs (capital expenditures) as a function of three annual equivalent costs, 
three completion times (schedules), and the cost of capital, Equation 15 expresses NPV as a function of annual 
equivalent free cash flows, life of the new product (from launch to withdrawal), and the variables contained in the 
completion costs equation, and Equation 16 expresses PI as a function of variables contained in PV of free cash 
flows and PV of completion costs equations. However, as the empirical evidence indicates, actual costs, schedules, 
and benefits (free cash flows) almost always deviate from initial estimates. Therefore, a realistic approach is to treat 
costs, completion times, and FCFs as random variables and determine their probability distribution functions. But, 
because in the case of new product development we do not have a multitude of similar historical data to develop 
frequencies and histograms and estimate expected values, it is not really possible to estimate probability distributions 
from historical data. Therefore, we have to treat each alternative technology solution for a NPD project as a unique 
case and propose a probability distribution function for it. In this paper, we develop the Pert-Beta approach to 
estimate probability distribution functions for costs and completion times. But, because the relationships expressed in 
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Equations 14, 15,, and 16 are not linear, we can not determine the probability distributions of PV of Completion 
Costs, NPV, and PI even if we know the probability distributions of costs and completion times at each Stage of the 
NPD process and the probability distribution of FCFs during the new product’s life cycle. Therefore, we need to 
resort to methods such as Monte Carlo Simulation to study the combined effects of uncertainties at each Stage and 
for the evaluation metrics expressed in Equations 14 through 16 and conduct risk analysis. In section 7 we will 
develop the Pert-beta probability distribution function and apply it to costs, completion times, and FCFs estimation 
and in section 8 we will demonstrate application of Monte Carlo Simulation for probabilistic completion costs, 
completion time, NPV, and PI analysis in the context of a notional case study. 

7. Pert-Beta Probability Distribution Function for Costs and Schedules 

To develop the Pert-Beta probability distribution we combine the Program Evaluation and Review Technique (PERT) 
approach of project management, originally developed in 1958 by the U.S. Navy for risk analysis in activity duration 
analysis in the POLARIS missile program, with the well-known beta probability distribution. Since its inception the 
Pert approach has been widely used in probabilistic modeling of projects’ activity times as well as project’s cost 
modeling (Cooper et al., 2005). 

The beta probability distribution is appropriate for a continuous random variable whose values are bounded between 

finite limits a (minimum) and b (maximum). The density function of such a probability distribution is written as:  
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for a x b   and = 0 elsewhere.    
Where q and r are the shape parameters and can take different values giving rise to different shapes of the beta 
distribution and B(q,r) is the beta function defined as: 

 q rB( q ,r ) z ( z ) dz  
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1 1

0
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The mean and variance of the beta distribution are as follows (Ang & Tang 1975): 
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and        

 Variance: 
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In the special case where the boundary values are a = 0 and b = 1, the distribution is called standard beta 
distribution.  

The main advantage of beta distribution for practical applications is that it does not have any predetermined shape, as 
the bell shape of the normal distribution does. In many real life applications, including in issues like completion time 
and cost estimates in project management, we do not have prior knowledge of the shape of the distribution of the 
random variable, and thus as Taylor [2011] indicated the Beta distribution gives us the flexibility of adjusting the 
shape of probability distribution to different unique circumstances.  

In the Excel environment q and r are called Alpha and Beta respectively and a and b are denoted by A and B. The 
function to get random values belonging to the beta distribution is =BETAINV(rand(),alpha,beta,A,B) and the 
function to get cumulative probabilities for a given value of the beta random variable x is 
=BETADIST(x,alpha,beta,A,B). We will be using these Excel functions later in this paper to generate random 
numbers for costs and schedules for each Stage of the NPD process and will use them for the Monte Carlo 
Simulation analysis. 

The Pert-Beta distribution is a special case of beta distribution in which the mean and variance are forced to be 
expressed independent of the shape parameters q and r. This is done by incorporating the PERT technique of 
estimating mean and variance of a random variable into the beta probability distribution. Consequently, the mean and 
variance of Pert-Beta distribution are defined as: 

 Mean:
a m b


 


4

6
, (21) 

and,        
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 Variance:
(b a )



2

36
 (22) 

Where a, b, and m are subject matter experts’ (SME’s) estimates of the minimum, the maximum, and the most likely 
(m) values of the random variable x. The Pert-Beta distribution is similar to the Triangular distribution in the sense 
that it is based on SME’s estimates of the same three parameters. However, the Pert-Beta distribution is more suitable 
than the Triangular distribution for reflecting probabilities based on SME’s three parameter estimates because of the 
following: 

 The expected value (mean) of the Triangular distribution is equal to the simple average of the lowest, the 
highest, and the most likely estimate, and thus carries equal weights (1/3) for all the three parameters. But, 
in the Pert-Beta distribution the mode is given four times more weight than the lowest and the highest 
estimates in order to arrive at an expected value (mean). This is because estimators can usually provide a 
more confident guess for the mode than they do for the minimum or maximum. Thus, the expected value in 
the Pert-Beta distribution places less emphasis on the lowest and the highest estimates 

 The standard deviation (square root of variance) of Pert-Beta distribution is 1/6 of the range (maximum less 
minimum).  

 Unlike the triangular distribution, the Pert-Beta distribution constructs a smooth curve, which places 
progressively more emphasis on values around the most likely value. 

 
Figure 2. Comparison of Pert-Beta and Triangular Distributions 

Because traditionally the PERT approach is applied to activity analysis, project management texts and academic 
papers about the PERT approach go as far as applying the central limit theorem to the sample mean and construct 95% 
confidence interval for the mean of beta distribution for activity time. However, for the central limit theorem to be 
valid a large number of instances is required, which is not always the case. Moreover, the literature does not discuss 
how the expert estimates and the PERT mean and variance in Equations 21 and 22 can be incorporated into the beta 
probability distribution for risk analysis and probability statements. In what follows we will explain how PERT mean 
and variance equations can be used to define a unique beta distribution function so that we can conduct risk analysis 
without resorting to central limit theorem. 

Pert-Beta distribution can be simulated in Excel, even though Excel does not have a specific function for Pert-Beta 
distribution. The fact that mean and variance of pert-beta are predetermined leads to single and unique values for the 
shape parameters q and r in terms of a, b, and m. By substituting mean and variance defined in Equation 21 and 
Equation 22 into Equation 19 and Equation 20 respectively we can express q and r in terms of a, b, and m. We can 
then input these values of q and r into Excel beta distribution function as the alpha and beta arguments and use Excel 
beta distribution function to generate Pert-Beta random numbers or make probability statements about specific 
values of the variable. Solving Equations 19 through Equation 22 for q and r in terms of a, b, and m we get:  
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where,  
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Depending on whether m is close to a, or close to b, or in the middle of the two, the Pert-Beta distribution could be 
left skewed, right skewed, or symmetrical. In particular when m = (a+b)/2 then the mean and the mode become equal 
and we get a symmetrical distribution with q=r=4.  

8. Case Study with Monte Carlo Simulation 

In the traditional NPV approach, uncertainty is treated by including a risk premium in the cost of capital commensurate 
with the riskiness of the project. This reduces the NPV of projects with higher risks and thus makes them less desirable. 
Therefore, the compounding effect of the risk premium in the traditional approach penalizes investments with longer 
life and thus leads to favoring investment projects with short life spans (Carmichael & Balatbat, 2008). Moreover, 
when there are multiple risk factors with different degrees of uncertainty involved in affecting the NPV, it is not 
obvious which risk factors are reflected in the assigned cost of capital. Monte Carlo Simulation is an approach that 
resolves these shortcomings. 

Monte Carlo simulation has been successfully applied in fields related to modeling complex systems in biological 
research, engineering, geophysics, meteorology, computer applications, public health studies, and finance. Since the 
original article published by Metropolis and Ulam (1949) on application of the Monte Carlo Method in mathematical 
physics, researchers have applied the Monte Carlo method to a wide range of nonequilibrium and equilibrium 
processes and to a variety of complex problems (Amar, 2006). Kawk and Ingall (2007) explored the applications of 
Monte Carlo simulation for managing project risks and uncertainties. They reported that researchers in project 
management currently apply the Monte Carlo Simulation primarily in the areas of cost and time management to 
quantify the risk level of a project’s budget or planned completion date as well as for better understanding of project 
budget and estimating final budget at completion. Williams (2003) discussed advantages of Monte Carlo Simulation 
compared to other methods in addressing uncertainty in project management. He particularly emphasized that the 
problem with other analytical methods is that “the restrictive assumptions that they all require, making them unusable 
in any practical situations” (p.3). 

In Monte Carlo simulation we know a dependent variable is affected by some independent random variables, we know 
the mathematical formula that defines the dependent variable as a function of the independent variables, and we know 
the probability distribution of each independent random variable. However, we don't know the probability distribution 
of the dependent variable. By making many draws from the probability distribution of each independent variable and 
calculating the values of the dependent variable, we can get an idea about the probability distribution of the dependent 
variable, graph the probability density function and the cumulative distribution function, and make probability 
statements. In other words, we have the random variable y being a function of some random variables xi as defined in 
Equation 26 

 y = f(x1, x2,…xn) (26) 

where, each xi is a random variable with known probability density function. We randomly draw one number from the 
probability distribution of each xi and then calculate the value of y. We then repeat the process many times, and then 
organize the values of y in a relative frequency histogram and a cumulative relative frequency polygon. The resulting 
cumulative relative frequencies can then be used to make probability statements about the value of y falling below, or 
above, or between some thresholds of interest. Moreover, the mean and the standard deviation of the calculated y’s give 
us an estimate of the expected value and the expected volatility (uncertainty) of the dependent variable y (Taylor, 2011). 
Commercial software for Monte Carlo Simulation recommend at least10000 trials in a Monte Carlo Simulation. 
However, validation of a Monte Carlo Simulation requires repeating the trials until a steady state is reached, where the 
expected value (mean) of the results stays constant and does not changes with further repetition of the trials (Taylor, 
2011). In a capital budgeting problem, the dependent variable is the NPV, or other metrics discussed in this paper, and 
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the independent variables are completion costs (capital outlays), future FCFs, completion times (schedules), and the 
cost of capital. 

In Tables 1 and 2 we have the data for completion costs, FCFs, and completions times for a notional new product 
development project based on subject matter experts’ estimates. All investment costs, free cash flows, and 
completion times are random variables and follow Pert-Beta probability distributions.  

Table 1. SME’s Estimates of Minimum, Maximum, and Most Likely costs and FCFs of a Notional New Product (All 
costs are in in Million Constant Dollars 

 
Table 2. SME’s Estimates of Minimum, Maximum, and Most Likely completion times of a Notional New Product 

(All completion times are in years) 

 
Applying the information in Tables 1 and Table 2 to Equations 23 through Equation 25 we find estimates of 
Pert-Beta shape parameters q and r, respectively. From Equation 21 and Equation 22 we estimate expected values 
(means) and standard deviations of the random variables. The results are shown in Table 4 and Table 5. 

Table 4. Pert Beta Probability Distribution Parameters of Completion Costs and Free Cash Flows (annual 
Equivalents in constant $million) 

 
Table 5. Pert Beta Probability Distribution Parameters of Completion Times and Life Cycle (in Years) 

 
The information in Table 4 and Table 5 provide us with estimates of the parameters (a, b, q, r) that define probability 
density functions of the components of Completion Cost (Equation 14), PV of FCFs (Equation 13), NPV (Equation 
15), and PI (Equation 16). We now apply the Monte Carlo Simulation approach to estimate probability distributions 
for Completion Cost, PV of FCFs, NPV, and PI and find their expected values and standard deviations. To do so we 
apply the Excel function =BETAINV(rand(),alpha,beta,A,B) to generate random numbers for C1, C2, C3, N1, N2, N3, 
FCF, and N4 and then plug the resulted random numbers into equations 13 through 16 to generate random numbers 
for Completion Cost, PV of FCFs, NPV, and PI. We then repeat the process many times until we reach steady states 

Minimum (a) Maximum(b) Most likely(m)

Stage 3 Costs (C 1 ) 640.00 960.00 672.00

Stage 4 Costs (C 2 ) 139.69 174.61 153.66

Stage 5 Costs (C 3 ) 10.75 18.50 12.36

Life Cycle Benefits (FCF) 605.15 812.12 785.25

Minimum (a) Maximum(b) Most likely(m)

Stage 3 Completion Time (N 1 ) 1.25 2.25 1.75

Stage 4 Completion Time (N 2 ) 0.5 0.75 0.67

Stage 5 Completion Time (N 3 ) 0.33 0.5 0.38

New Product Life Cycle (N 4 ) 4 7 6.00

Minimum 
(a)

Maximum(
b)

Most 
likely(m)

Expected value 
(m)

Standard 
Deviation(s)

Shape 
parameter 

(q)

Shape 
parameter 

(r)

Stage 3 Costs (C 1 ) 640.00 960.00 672.00 714.67 53.33 1.27 2.17

Stage 4 Costs (C 2 ) 139.69 174.61 153.66 154.82 5.82 3.40 4.44

Stage 5 Costs (C 3 ) 10.75 18.50 12.36 13.12 1.29 2.03 4.61

Life Cycle Benefits (FCF) 605.15 812.12 785.25 759.71 34.50 4.34 1.47

Minimum 
(a)

Maximum(
b)

Most 
likely(m)

Expected value 
(m)

Standard 
Deviation(s)

Shape 
parameter 

(q)

Shape 
parameter 

(r)
Stage 3 Completion Time (N 1 ) 1.250 2.25 1.75 1.75 0.167 4.00 4.00

Stage 4 Completion Time (N 2 ) 0.500 0.75 0.67 0.66 0.042 4.64 2.84

Stage 5 Completion Time (N 3 ) 0.330 0.50 0.38 0.39 0.028 2.63 4.67

New Product Life Cycle (N 4 ) 4 7 6.00 5.83 0.500 4.62 2.94
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where the expected values of these outcomes do not change as we repeat the iterations. Table 6 shows a portion of 
the Monet Carlo Simulation calculations with 10,000 trials. 

Table 6. Monte Carlo Simulation Results with 10,000 Iterations 

 
All expected values reached steady states between 8500 to 9500 trials. As an example the graph of NPV’s expected 

value versus the number of trials is exhibited in Figure 3. 

 

Figure 3. NPV’s Expected Value versus Number of Trials in Monte Carlo Simulation 

Expected values (means), standard deviation, and other descriptive statistics of PV of cop[letion cost, PV of FCFs, 
NPV, and PI are reported in Table 7. 

Table 7. Descriptive Statistics of PV of Completion cost, PV of FCFs, NPV, and PI 

 
Histogram of PV of completion cost, PV of FCFs, NPV, and PI are shown in Figure 4 

Generating Random Numbers from Probabilty Distributions Equation 14 Equation 13 Equation 15 Equation 16

Trial
Stage 3 
Costs

Stage 3 
Completion 

Time

Stage 4 
Costs

Stage 4 
Completion 

Time

Stage 5 
Costs

Stage 5 
Completion 

Time

New 
Product's 

FCF

New 
Product's 
Life Cycle

PV (Completion 
Costs)

PV(FCFs) NPV PI

1 667.9355 2.039462623 154.604 0.639575565 13.9819 0.398459269 757.0634811 5.45266491 1320.19 1651.32 331.13 1.25
2 938.4176 1.800158247 156.281 0.62864999 12.8533 0.382482887 782.678127 6.52333358 1653.44 1979.16 325.72 1.20
3 698.4707 1.661130577 150.126 0.598445416 13.0604 0.373044037 700.5645869 5.6636717 1168.27 1692.47 524.20 1.45
4 835.0331 1.590920231 154.066 0.678835441 12.5282 0.403775406 731.4514199 6.59967848 1346.60 1907.63 561.04 1.42
5 755.3944 1.876809228 148.615 0.637679798 12.5762 0.394443148 770.0520441 5.10849252 1387.73 1665.08 277.35 1.20
6 649.3903 1.637478791 148.873 0.669633153 17.3258 0.348688022 777.4034926 5.51996748 1087.00 1842.62 755.62 1.70
7 646.5171 1.746588565 155.257 0.701518815 13.5798 0.365959757 781.6301572 5.29930374 1143.77 1757.71 613.94 1.54
8 801.2247 1.84611252 158.748 0.681729385 12.2388 0.344989 732.9358221 6.59870099 1457.81 1844.01 386.19 1.26
9 731.1494 1.617040418 155.237 0.673884548 11.741 0.38112453 696.315731 6.12966061 1204.46 1746.16 541.70 1.45

9992 757.1613 1.853578848 161.018 0.721269704 16.7212 0.38132149 783.1702912 5.64465524 1393.44 1781.53 388.10 1.28
9993 925.4455 1.757129826 147.456 0.663899379 12.0052 0.382481629 778.6095192 5.81955417 1599.92 1852.52 252.60 1.16
9994 849.4883 1.398297881 152.758 0.592349989 11.5111 0.368811657 754.5109673 6.5827468 1223.54 2079.44 855.89 1.70
9995 749.8343 1.878506526 150.492 0.711366842 13.1809 0.429861434 801.3458426 5.96360173 1387.97 1859.20 471.23 1.34
9996 804.2747 1.70450701 153.5 0.68827184 14.0661 0.374180384 742.4904645 5.84920988 1373.48 1783.36 409.87 1.30
9997 873.3774 1.493898786 152.948 0.686376059 13.0333 0.392072037 750.1687958 5.9024559 1336.19 1875.58 539.38 1.40
9998 750.8708 1.822146175 158.665 0.681507256 16.8686 0.350303337 737.5580332 5.7368453 1358.68 1724.89 366.20 1.27
9999 722.7146 1.956579619 166.643 0.629519718 13.7373 0.392586358 740.7329361 5.45016898 1382.13 1644.25 262.12 1.19
10000 748.4177 1.857216217 143.951 0.628973735 12.1722 0.348620619 688.2646245 5.82637184 1360.86 1629.44 268.58 1.20

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 2000 4000 6000 8000 10000 12000

Expected value versus number of trials for NPV

Steady State expected value Standard deviation Skewness Kurtosis

PV(FCFs) 1,809.55 133.64 -0.19 -0.18

PV(Completion Costs) 1,322.32 155.4 0.35 -0.19

NPV 487.24 230.74 -0.12 -0.17

PI 1.39 0.22 0.39 0.04
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Figure 4. Histograms of Monte Carlo Simulation Results for PV of Completion cost, PV of FCFs, NPV, and PI 

9. Conclusion 

Stage-gate model for new product development (NPD) and for any research and development (R&D) project consists 
of a series of stages and gates; each stage is a set of research activities and gates are milestones at which decisions 
are made based on predetermined criteria. However, given the uncertainties affecting the outcome of an NPD, there 
is a gap in the literature with regards to modeling these uncertainties and developing appropriate probabilistic 
evaluation metrics. 

In this paper we contributed to the field by developing a probabilistic capital budgeting model for a typical 5-stage, 
5-gate process to be used for appraising commercial viability of the NPD at Stage 2 which will serve as one of the 
decision making criterion at Gate 3. Because in an NPD project, completion costs (capital investments), completion 
times, and future cash flows are uncertain, we developed the Pert-Beta probability distribution approach to encounter 
for the randomness of these variables. Furthermore, we suggested the model can be applied to real case NPD projects 
with the Monte Carlo Simulation approach. We then verified the workability of the model by applying it to a notional 
NPD project and demonstrated that all decision variables reach steady state in the Monte Carlo Simulation 
calculations. 

The model we developed here is based on the assumption that there are always some SMEs that can provide us with 
estimates of the required parameters of the model. Therefore, a limitation of this approach is the availability, the 
willingness, or the ability of SMEs to provide reliable estimates for the specific NPD under review.  

One area of further research include extension of the model to include assessment under other Stages after Stage 2 
and development of a compound model to incorporate uncertainties removed or added after stage 2 evaluation. 
Another area for further research is to consider multiple SMEs providing estimates and possibly consider SMEs’ 
estimates of the model parameters as random variables rather than constant values 
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