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Abstract  

Introduction This is the fourth research report where various aspects of the CapitalCube™ Market Navigation 

Platform [CCMNP] of AnalytixInsight™ have been examined. Previous Results In our previous three studies, we 

have tested many of the CCMNP-variables as expressed through the S&P500; we have rejected the Nulls of their 

inter-and intra-group association in favor of the likelihood that the variables that constitute the CCMNP are not 

produced by random generating processes. This suggests that the CCMNP is capable of creating market relevant 

information that may inform the investment decision. Current Study The previous results beg the question that is the 

focus of this report: Given the Non-Random character of the various CCMNP panel variables, does this panel of 

information enable the identification of a particular stock that will, in the near future, experience a turning-point? 

Results: We find no evidence that the CCMNP aids in detecting turning-points for the S&P500 Panel of data tested. 

Various caveats to this study are detailed in the summary section of this research report. Finally, we offer that the 

methodology used in investigating the CCMNP is a simple, transparent, and useful model for evaluating the acuity of 

a MNP in detecting turning-points. 

Keywords: stock market, turning-point, linguistic codex     

1. Introduction: The Testing Landscape for Market Navigation Platforms [MNP] 

1.1 Context of this Research Report  

The focus of this research report is to follow-up on the research reports of Lusk & Halperin (2015, 2016 & 2017) 

which addressed the nature of the associational analysis of the variables of the CapitalCube™ Market Navigation 

Platform [CCMNP: [<http://www.capitalcube.com/>]] a commercial product of AnalytixInsight™ 

[<http://www.analytixinsight.com/>]. Considering the variables of the CCMNP, they report that the Nulls of their 

inter- and intra-group associations may be rejected in favor of the likelihood that these CCMNP variables are not 

produced by random generating processes.  Given this as context in, we: (1) suggest a methodology for assessing 

the predictive acuity of a MNP, and (2) then apply this methodology to the analysis of the CCMNP.  

1.2 Groups of MNPs  

To focus this report in the vast domain of MNPs, we give the performance context within which we will form the 

testing of the CCMNP. In this regard, we classify MNPs into four groups:  

Data Capture MNPs provide only a systematic collection of reported market data focusing on individual trading 

units [usually listed stocks] presented in a consistent standardized format for re-reporting the longitudinal tracking of 

this data:  e.g., CRSP™ or COMPUSTAT™. 

Screen Oriented MNPs collect market data that is filtered and reported using idiosyncratic functionalities so as to 

form a Linguistic, usually ordinal, scale or context over the Panel reporting time frame: e.g., the CCMNP has a 

Screen called Accounting Quality expressed using four Linguistic Qualifiers [LQ]: Aggressive Accounting, 

Conservative Accounting, Non-Cash Earnings, & Possible Sandbagging. 

Suggestive MNPs summarize various data reporting screens using idiosyncratic functionalities so as to arrive, often 

tactically, at a suggestive recommendation: e.g., Stock Investor Pro™ of the AAII forms many screen oriented 

portfolios that are rated against many benchmarks including trading indices and relative returns. In this benchmark 

profiling, the ordinal ranking is the tacit preference ordering. Also, as an extension of the tacit nuance offered by the 

http://www.capitalcube.com/
http://www.analytixinsight.com/
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codex of the screens of the suggestive MNPs almost all of the major market “brokerage” houses have final summary 

recommendations, the most basic of which are: Buy, Hold, or Sell. These are variously called “analyst reports”, 

“sell-side reports”, or “equity research reports” and are often available, usually by subscription, from such sources as 

Thomson One (<http://www.thomsonone.com>). Also many market tracking platforms offer summary indications of 

analysts. For example, Bloomberg MNP[<https://www.bloomberg.com/>] IBM[ANR]], searched on 7April2018, 

reported 33 analyst recommendations ranging from Buy to Sell with intermediate codings as: Neutral, Hold and 

Overweight from houses such as: Goldman Sachs, J.P. Morgan, & Morgan Stanley. 

Algorithmic MNPs offer trading e-programs that evaluate various suggestive screens and based upon 

frontier-benchmarks execute market-actions usually: Buy, Hold, or Sell as the market information is reported. An 

excellent summary of this class of MNP is found in Moldovan, Moca & Nitchi (2011). Interestingly, algorithmic 

trading is regulated by most exchanges as it can destabilize the market as many of these e-functionalities can be 

hyper-sensitive to directional volume changes and so create their own self-fulfilling prediction. An excellent 

document, that is a must read in any Market Trading Course, is offered by the NYSE: 

Algos offered by third-party providers may provide a greater menu of trading strategies, 

provided that the provider enters into a connectivity agreement with the NYSE that 

includes an agreement to comply with NYSE rules and restrictions on specified trading 

activity. The third-party provider connectivity agreement is available here (Note 1). 

Our focus is NOT to test or collect information on the inter-class question: Which of these four MNP-classes seems 

to be the best choice for engaging a comparatively high return?  Nor are we addressing an intra-class question: For 

a given class of MNP which MNP or Grouping of MNPs are “best of the rest of their class”? To be sure these are 

critically important questions and interestingly have not been comprehensively addressed to date—probably due to 

the enormous commitment of time to effect such a study! We are interested, as we have been in our other studies of 

the CCMNP, on the per se performance of the CCMNP and not in the relatively effectiveness of the CCMNP in 

comparison to the plethora of MNP currently commercially available. 

2. Question of Interest: The Conceptual Setting of Our Investigation 

What is a unifying variable that one may use to form an analysis of any of the types of MNPs? After we address this 

core question, we will offer a testing MNP methodology and then apply it to the CCMNP. Initially, however, it is 

important to address the per se utility of a MNP.  

2.1 Are MNP Useful vis-a-vis Unaided Individual Prowess?  

As a benchmark rationalization, an important question is:  

What is the return performance of independent traders—that is, individuals acting without 

the aid of professional advisors or membership links to organizations that offer suggestive 

MNPs that justify traders eschewing other “safe” investments such as: (i) the wide range 

of T-Bills offered by the US Department of the Treasury, (ii) speculation in the precious 

metals markets, or (iii) highly-rated Bond offerings, usually AAA[S&P] or Aaa[Moodys].  

This question pre-conditions the analysis of MNPs because if independent traders are able to secure a “satisficing” 

return, then MNPs may not present an attractive economic choice and are more in the mode of “interesting market 

video-games”. The research that addresses this question suggests that individuals, viewed in the aggregate, do not 

seem to outperform the vast array of MNP-alternatives. Specifically, Barber & Odean (2000) found that individuals 

were net-trading-return-losers on their Buy–Sell profile—to wit they were not skilled in detecting turning points or 

trajectory changes in the market profiles, target stocks, or portfolios. They seem to Sell on the eve of upturns and 

Buy on the eve of downturns; this is exactly the opposite of the Golden-Rule of Trading: Buy Low & Sell High! 

Following on this study, Korniotis & Kumera (2013) found for a relatively limited time period and at a time where 

market rationality was at issue, 1991 to 1996—i.e., the gestation of the dot.coms—that individuals who held trading 

accounts with |discount brokers were outperformed by the “wholesalers” holding trading accounts. They argue that 

this difference may be due to a differential in intelligent use of information relative to the future comparative market 

price trajectories. This is also implied by the Barber & Odean study. A final reference that focus on market 

sophistication and intelligent use of information screens and other variables is offered by Barber, Huang & Odean 

(2016) who find, not surprisingly, that intelligent use of market information is a key variable in successful  

investing. 

In our study, therefore we will take it as given that MNP access is capable of providing intel, the nature of which, 

improves investment return decisions against an un/under informed individual.   

http://www.thomsonone.com/
https://www.bloomberg.com/
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2.2 Measures of Predicative Acuity  

Accepting that MNPs justify their cost of engagement, we turn our attention to selecting a measure that has a logical 

rapport with the predicative acuity of a MNP. To recommend such a measure, we offer that the Screen Oriented & 

Suggestive MNPs, which we have classed above, provide a relevant insight. Both Screen Oriented and Suggestive 

MNPs create information that is profiled in the codex of their Market Screens to indicate or at least suggest that there 

is an “impending” change in the price-trajectory of the tracked stock. Using this common-sense measure, we offer 

that the most relevant, reliable, and independent—non-conditioned on the MNP Screen profiles—is the trajectory of 

the stock as traded on the market—i.e., valued at the bell-price. 

This longitudinal tracking change is termed, in the relevant literature, as a Turning Point [TP]. The research on 

anticipating TPs in trading markets has occupied researchers since the inception of trading where value in exchange 

is one of the variable of interest. For example, the statistical modeling protocol developed by Bry & Boschan (1971) 

is one of the progenitors models focused on screening market activity to identity TPs and as such laid the statistical 

foundation for many of the subsequent programmed elaborations.  

The theoretical—albeit logical—justification for using the TP in benchmarking the utility of a MNP is expressed 

succinctly by Nyberg (2013, p. 3352) who notes: 

In general, the idea of classifying the state of the stock market into bear and bull markets 

is similar to identifying recession and expansion periods of real economic activity - - -. 

Measuring the state of the economy and understanding the transition between recessions 

and expansions has been a major topic in business cycle research for a long time. In 

principle, the methods that are used to determine the business cycle turning points can 

also be employed to find the stock market turning points. 

2.3 TP-Summary  

The logical extension of Nyberg’s advice is evident; if there is no functional or ordinal directional association 

between the MNP-Screen guidance information and the related market activity, then an inferential test for 

randomness will not be able to reject the Null—i.e., the MNP-Screens are able to provide Market-intel that 

outperformed random chance. In this context, we offer that a universally useful measure of a MNP is the prediction 

of [or sensitivity to] a turning point [TP] in the trajectory of a traded security. To the point:  

If one finds after testing that there is NO relationship between the logical directional information of the 

MNP-Screens and the reality of the TPs in the market, then one may assume that the Screening information is not 

in-sync with the reality of the Market.  

This will form the basis of our inferential test of the CCMNP. In the following sections of this research report, we 

will provide the context and, to be sure, the details needed to adequately evaluate the logic of our testing of the 

CCMNP all of which will provide the transparency needed to replicate the approach that we used and recommend.  

3. The Evaluation of the CCMNP: Addressing the Detection of Turning Points 

3.1 The CCMNP Context  

We received the CapitalCube [CC] Market Navigation Platform [CCMNP] as a download from AnalytixInsight, Inc. 

[AI]. This CCMNP download included all the firms listed on the S&P500 as of 9 April 2015. The CCMNP 

longitudinal Panel starts on 2 Jan 2005; the last point was 20 March 2015; the data from inception to and including 

2013 are monthly time series; starting in 2014 to the last data point in 2015 the time series is S&P500 values on 

trading days. For most of the firms there are 371 data Panel data points. We, the authors, together with Ms. Marjorie 

Churgin, Director of Development and Mr. Gautam Pasupuleti COO, both of AI & CC discussed over a few months 

questions of clarification regarding some of the variables of the CCMNP. This was a time to collect elaborations on 

the definitions offered by CC at: http://www.capitalcube.com/blog/index.php/glossary 

The agreement with AI&CC was that we would not share this data with any others and there were to be no reporting 

restrictions placed upon us. CapitalCube was not given pre-draft publications and elected to not participate with us in 

any of the analyses. This is to say that this work is not conditioned by the reactions, opinions, advice, council, or 

feedback by AI or CC. In this sense this is our work as independent researchers. This was an academic analysis of 

the CCMNP—to wit: there are no monetary, in-kind, or quid-pro-quo compensation arrangements between us and 

AI&CC, nor do we have any financial interest of any type that would be a conflict of interest to our reporting of the 

analysis of the CCMNP. Caveat: As full disclosure, the authors do have free access to the WRDS™ platform of the 

http://www.capitalcube.com/blog/index.php/glossary
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Wharton School of the University of Pennsylvania and to all of the resources that are part of the Lippincott Library 

of the Wharton School; some may view this as a conflict of interest.   

3.2 Nexus of the research addressed to the CCMNP  

Following we will: 

1.) Discuss the context of this research report and our previous studies of the CCMNP, 

2.) Propose and detail the TP-measure that we will use as the test of the CCMNP, 

3.) Offer the protocols that we will use to test the market projections that we drew from the CCMNP, 

4.) Summarize the results of the vetting of the CCMNP, offer caveats to our study, and 

5.) Offer conjectures as to follow-up studies of MNPs. 

4. Our Previous Studies and the Principal Variables of the CCMNP 

4.1 Variables of the CCMNP  

There are a number of variables that are part of the CCMNP that were used in our previous testing of the CCNMP. 

All of these variables are detailed on http://www.capitalcube.com/blog/index.php/glossary. For this reason, in the 

interest in the space constraints of the journal, we will only mention these variables and provide an overall summary 

of the results presented in our previous three studies.   

4.1.1 Variables in the Real Domain Lusk & Halperin (2015) tested associational profiles of four of the major Market 

Navigation Interval Scaled Variables [MNISV]: Current Price Level Annual [CPLA]; Scaled Earnings Score Average 

Latest [SESAL]; Previous Day Closing Price Latest [PDCPL] & CapitalCube Price Latest [CCPL]. Also tested were 

context or possible benchmarking variable sets: [Fifty-Two Week Low]; [Fifty-Two Week High]; [Capital Cube Price 

Range Min] & [Capital Cube Price Range Max]. 

4.1.2 Market Performance Variables [MPV] and their Linguistic Qualifier[LQ] Screens Lusk & Halperin (2016) tested 

the associational profiles of the MPV with their LQs using information provided by experts who gave their assessment 

of the directional indications for the LQs. For example, one of the 12 MPVs is Accounting Quality for which there are 

four Linguistic variables: {Aggressive Accounting[AA]; Conservative Accounting[CA]; Non-Cash Earnings[NCE]; 

Possible Sandbagging[PS]}. The experts used by Lusk & Halperin (2016) judged that these four LQs suggest that 

CA & PS are indications of increases in the stock’s future value; and AA & NCE would be indications of decreases in 

the stock’s future value.  Testing showed that there was non-random association in the expected direction for the 12 

MPVs tested using the expert judgements of the LQs for each of the MPVs. 

4.1.3 Integrated testing of the MPV[LQ]s over the MNISV. Lusk & Halperin (2017) tested the ensemble of the 

variables of the CCMNP and determined that there was non-random association of the profiles of the MPV[LQ] sets 

relative to the MNISV.     

4.2 Overall Summary  

For the Lusk & Halperin studies noted above, the overall take-away is that variables of the CCMNP tested are not 

produced individually or in conditioned composition by random generation processes. We offer that studies of this 

genre are necessary in any careful examination of the vetting of the predictive integrity.  

4.3 Focus of the Research  

In this paper, we take up the evaluation of the reason d’être of a MNP—to wit, the question of interest that will 

guide our research protocol is:  

Does the past information set of the MNP panel provide specific insights into the future stock performance? 

This is termed predictive validity. Although this seems a relatively clear evaluation criterion, there are many testing 

conditions that need to be considered to operationalize the testing of the predictive validity of a MNP. We will take 

up these operational issues following. 

5. Market Navigation Platforms: An Enterprise of Magnitude 

One is impressed with the variety of possibilities for collecting, forming screens and taking an action in the market 

trading world afforded by MNPs. Given the vast number of testing configurations of a MNP, we will endeavor to 

provide a simple but detailed protocol for testing the predictive acuity of the CCMNP. Following, we will articulate 

three principal components of the protocol that we will use to test the predictive validity of the CCMNP: 

 

http://www.capitalcube.com/blog/index.php/glossary
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5.1 Component A the Essential Measure  

Above we have arrived at the following nexus variable—The Turning Point of the Stock Trajectory[TP]. By this we 

mean:  

The [TP] is a temporal-point in the historical market tracking of a particular stock where 

the tracking of the stock will dramatically change direction for a reasonable period of 

time. Most simply stated: 

A Turning Point is: The Dramatic Change in Direction of a Time Series. 

5.2 Component B Dramatic Change in Direction 

Next we need to operationalize the measure of: Dramatic relative to the tracking of a stock. In this regard, we need to 

have a variable that is NOT part of CCMNP but that is related to its predictive context. The actual values of the 

S&P500 are a perfect fit for this Benchmark. In this regard, we prefer the Chen and Chen (2016) modeling approach 

which is a coding protocol based upon pattern recognition that uses simple Excel functionalities in the VBA class as 

filters to create Screening profiles. Their innovative and intuitive approach seems, to us, preferable as such 

Intuitive-Screens are transparent and are formed along the cognitive plane of Human Information Processing [HIP] 

rather than “steeped in obscure assumptions which are often untested for applicability”. 

In this regard, referencing the work of Chen & Chen (2016) who focus on important turning points that they term: 

Bullish turning points, i.e., “enduring” upturns for some reasonable Panel segment in the longitude trajectory, we 

have selected a slightly simpler, but nonetheless programmable HIP-measure of a Dramatic Change: 

Signed Relative Change [SRC] = 
[

∑ 𝑌𝑡+𝑖
𝑛

− 𝑌𝑡]

𝑌𝑡
       EQ1 

where: 𝑌𝑡 is the monthly average for the S&P500 at month (Note 2) 𝑡; the index of i ranges in units to 4, that 

is—four points in the Panel just ahead of the value at point: t & n=4.   

To identify a Dramatic Change using the SRC of EQ1, we flag any monthly values for the S&P500 for which 

Abs[SRC] > 25%. We call these points: Reference Points [RP]; they are possible candidate TPs.    

5.3 Component C The Focus of the Testing  

As discussed above one may test individual stocks, size or value partitions of the Market, or portfolios of stocks as 

recommended by analysts. Further, one may identify stocks rated by a particular Screen, one may select sub-set of 

Screens for individual testing, or test select stocks for specific individual Screens. The testing possibilities are large, 

indeed vast. 

In this regard, considering the nature of the variable sets previously tested from the CCMNP, we have made the 

following testing election. Our guiding principle, being attentive to the transparency of the Chen & Chen modeling 

perspective is: Keep It Simple [KIS]; not to the exclusion of logical market and trading relationships and certainly 

not eschewing the theoretical context established as background, but rather to most simply address the question: How 

does the MNP fare in advising and informing investors on TP? Specifically, for our HIP protocol there are seven 

phases in moving from the SRC information to a TP: 

i.) Component C1 Select individual stocks as the evaluation unit rather than a portfolio of stocks; this 

avoids selection bias in forming a representative portfolio over the entire Panel. See Hall (2014) & Mo 

& Qiao (2015).  

ii.) Component C2 Test simply the statistical separation of the market values around the proposed TP [See 

Chen & Chen (2016)], 

iii.) Component C3 Select all of the CCMNP screens for which there is previous vetting information 

reported over the Lusk & Halperin studies to avoid selection bias in the screening measures. See [North 

& Stevens (2015) who extended the work by Schadler & Cotton (2008)] , 

iv.) Component C4 Select the entire S&P500-Panel as the temporal frame for the study to avoid selection 

bias in the accrual frame. See[Hall (2016)], 

v.) Component C5 Select a random sample of S&P500 stocks traded over the full Panel to avoid problems 

with survivor and selection bias as noted above. To be clear we will not attempt to select stratified 

samples from one of the many possible derivative partitions formed from the studies of Banz (1981) 

and Fama & French (1993), such as Small or Micro-CAP groupings.  
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vi.) Component C6 Create a simple ordinal scoring measure for the selected set of MPV[LQ] using the 

results of Lusk & Halperin (2016). Also See Chen & Chen (2016), and 

vii.) Component C7 Benchmark the scoring measure of Component C6 to make the decision as to what is a 

likely final evaluation of the selected stock respecting the LQ-Codex compared to the reality of the 

actual S&P500-TP. In this case, we will use only three events for the comparisons: CCMNP suggested: 

Increasing Value, or Decreasing Value or No Expected Change compared to the S&P500 reality: 

Increasing Value, or  Decreasing Value or No Expected Change in Value. This will create a 3×3 

Fisher-Exact test classification tableau which will form our simple statistical testing frame. 

In the following sections we will take this set of seven general aspects of the CCMNP testing protocol and 

provide the details needed to replicate our testing for most of the MNPs that are currently in the public domain; 

the simplest way to effect this communication is to form this information as part of an comprehensive 

illustration.  

6. Integrated Illustrative Discussion of the Various Components 

6.1 Illustrative Context  

The screen for the SCR [EQ1] is a simple Smoothing filter in the Mean-Class. In this case, given the expected 

stochastic variation it is likely that the longer the filter the more flags will be created. This is just the reality of a 

smoothing filter. The question is: What is a reasonable value for n, the index value for 𝑖. To make a reasoned 

determination without biasing  the selection by using the values of the CCMNP or those of the S&P500 Panel, we 

used the download of time-series values of the IIF[<https://forecasters.org/>] for the 181 series used in the 

groundbreaking forecasting study of Makridakis [1982]. We took a developmental sample of 37 series and employed 

the SCR screen for RP-values for n=: {2, 3, 4 & 5}. The greatest number of RP values identified, as expected, was 

for n=5 and the least was for n=2. We then took a holdback sample of 23 and found not different relative frequency 

results. Thus we aggregated the samples and using n=2 as the ratio-benchmark, the SRC filter ratio results flagged 

RP averages as follows: n=3 [The Standard Quarterly Sieve] gave as the Mean: [1.5]; n=4 [A Trimester Partition] 

gave as the Mean:[1.8]; and n=5 [An Asymmetric CY-Annual Sieve] gave as the Mean: [2.5]. As the smoothing 

screen results for n=3[Quarterly] and n=4[Trimester] are about the same, we used a blending criterion to decide 

between the two. Specifically, as there may be a Quarterly 10Q reporting and Market effect as documented by Hollie, 

Livnat & Segal (2005) that may be an artifact that acts to bias the creation of the flags, we prefer the trimester, n=4, 

that will, to some extent, blend-out this Quarterly-market effect.  

Given this SCR calibration the best way to effectively communicate and elucidate the number of decision points that 

lead to the CCMNP testing profile is to illustrate them using an actual firm selected randomly from the CCMNP.  

6.2 Illustration For Honeywell, Inc [Ticker:HON]  

We downloaded the monthly S&P500 bell-closing prices from the WRDS™ dataset of CRSP prices from 1Feb2005 

to 1Dec2013. For this stream of nine values, we applied the SRC as noted in EQ1: 

59.62 50.28 50.84 50.17 41.55 30.45 27.86 32.81 26.83 

Table 1 S&P500 values for HON: Point[41.55: Sept2008]  

If we apply the SRC to this section starting at point 59.62 the following 9 SRC points are produced:  

-0.1914* -0.1398 -0.2622 -0.3389 -0.2903 

-0.0529 0.0652 -0.0928 0.1520  

Table 2 S&P500 values for HON: SRC-Points from Table 1  

*For example, -0.1914 = [Average[ 50.28, 50.84, 50.17, 41.55] ─ 59.62] / 59.62] 

When the SRC-index moves to point 50.84 the SRC first flags a TP candidate and records as value of -0.2622; then 

as it moves along the Panel the points -0.3389 and -0.2903 are produced. 

As these are the only TP candidate points identified in the S&P500 and they are contiguous, we selected the last RP 

in the series as the reference point [RP] which occurs at 41.55 that has an SRC of -0.2903. This selection was guided 

by a simple point selection rule:  We selected the latest [most recent] RP in the contiguous turning point candidate 

stream as this would provide the least variance [most stable or robust] case in a back-cast; also, this point is most 

consistent with the HIP context as there are two RP flags that proceed the RP of 41.55 and thus act as reinforcement 

to the selected RP, 41.55 which then is the HIP-anchor value. This is the first screening phase where a RP has been 

https://forecasters.org/
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identified. Before we label this RP as a TP we will test the statistical separation of the RP; this is the second phase of 

the testing of quality of the RP before we label it as a TP.  

6.2.1 Testing the Separation Statistically The next test is to assess the quality of this RP of 41.55; bolded and shaded 

in Table 1. Before we examine the statistical separation around the RP we will verify the temporal quality of the 

association of the S&P500 with the CCMNP. The logic of this verification is simple: If there is an indication that the 

CCMNP is not temporally in sync with the S&P500 benchmark. Then we will not use this benchmark in evaluating 

the CCMNP. Recall that we [Lusk & Halperin (2015)] have previous tested overall temporal & intra-temporal 

association. This is now a further test of this temporal association. In this phase, we used the Pearson Correlation [PC] 

for the Panel segments to first determine the association of the S&P500 Panel segment with the PDCPL variable. 

Even though the PDCLP and the Month average of the S&P500 are not exactly the same [i.e., there is no isomorphic 

transformation that we could determine between the two], if they are not related there would be a logical jeopardy in 

using the related TP in the evaluation of the CCMNP. Specifically, we selected the time orientation of the RP and then 

indexed back nine (9) points and so select this time segment, n =10,  of the S&P500 and the time matched time 

segment of the PDCPL. If the PC, n=10: [S&P500 w. PDCPL] is < 90% we will not use that RP as a candidate TP as 

there could likely be a miss-cue of the downloads as the S&P500 should logically be highly associated with the PDCPL. 

In the case of HON, the PC [S&P500 w. PDCPL] = 99.5% note that this is a strong test for allocation as it is > than 0.71 

[(.5)^.5] the usual Harman[1960] eigenvalue frontier for factor group selection.  

6.2.2 Statistical Separation Around the TP The next reasonability test is to examine the magnitude of the separation 

around the RP. In this regard, as argued above, we took the Trimester bland of four, n=4, monthly points around the RP 

and used the Excel Two-Sample test assuming unequal variance (Note 3) to determine significance of the Mean 

separation. If there were no evidence at a p-value < 0.05 that the Null could be rejected for this Mean separation then 

we rejected that RP as a possible turning point. Simply said this test is an indication of the mean separation around the 

RP of the two sub-Panel segments. If the Mean of the four observation pairs are relatively close this two-tailed p-value 

will be relatively higher than 0.05, and we would reject that RP as a “fair” test of a turning point. This testing protocol 

tactically gives a NO-Effect zone for the TP. This is an important zone as it separates positive TPs from negative TPs.  

In the case of HON the two sets of four points around the RP of 41.55 tested to have a p-value of 0.0002 clearly 

rejecting the Null and suggesting likely important separation around the RP; further, as the points above 41.55 had a 

mean of 52.73 and the segment after the RP has a value of 29.49, the RP is a negative TP or consist with a Down-Turn 

in the tracking of the Panel values for HON. Note, if the positional orientation were to have been reversed the TP would 

have been positive in nature.  

6.2.3 Summary: The Selection of the TP as a Benchmark   

1.) We used EQ1 to screen the longitudinal panel to identify a SRC point that would qualify as a RP.  

2.) Then we tested the PC association of a sub-panel of ten points [the last point being the RP]. Specifically, the 

PC of the matched CCMNP & S&P500 sub-panels is tested. 

3.) Finally, we tested the magnitude of the Mean differential around the RP. If there was a Mean differential for 

which the two-tailed p-value, was > 0.05, we rejected this as a TP. 

This then is the overview of the protocol for identifying a point in the S&P500 panel that we will use as a TP. Consider 

now the details of the full testing protocol that will use the CCMNP information variable set to evaluate this S&P500 

benchmark TP as: {Positive, Negative or No-Decision}. In this section we will offer in detail, as did Chen & Chen 

(2016), the calibrations that are needed to form a simple and transparent evaluation protocol. 

7. The CCMNP Testing Protocol Using the S&P500 Turning Point 

To be very clear, the RP and related TP, per se, have derived association with a MNP. These are analytic creations, as 

detailed above, using the reported bell-prices reported by the S&P500 and summarized by WRDS[CRSP]. This is 

precisely why the S&P500 TP is an excellent benchmark for a MNP, as it is an independent measure of economic 

activity. Given that we now have this S&P500 TP-benchmark, the begged question is: 

Does the CCMNP provide information that permits the analyst to anticipate the change in the trajectory of the 

Market[S&P500] at the time point of the TP? 

To address this question, we examined the variables that are part of the CCMNP and make a selection of the variables 

to form a protocol to test the CCMNP’s acuity in identifying a TP.  
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7.1 Screens 

The Linguistic Qualifier [LQ] Codex of the CCMNP Most all of the MNP that we have examined have linguistic labels 

that are generated as a summary communication measure. The reason for this is clear; the DM often needs to have a 

signal that is a communication rather than raw transformed data. If the MNP produces a mass of data with no related 

algorithmic or heuristic linguistic codex this is merely a data-capture data-base such as CRSP or COMPUSTAT. For 

the CCMNP Lusk & Halperin (2016, 2017) report that the linguistic codex of the CCMNP is a rich set of meaningful 

ordinal measures that are produced by the generating function or engine of the CCMNP. Its functionality, i.e., filtering 

data to form the linguistic codex, is the intellectual property of the CCMNP. For our purposes, rather than selecting a 

sub-set of the screens that were used by Lusk & Halperin (2016), we selected all 12 of their linguistic codes. These 

were tested by experts in Accounting and Finance and were found to be sensitive, specific and overall reasonable 

action codes. The rational for using all of the codes rather than a selected sub-set follows on the research of North & 

Stevens (2015) that reports that 30% of the Screens in that temporal environment were not individually effective; 

further Hall (2016) notes in an evaluation of 35 screens taken from DataStream™ that: 

Unfortunately, it seems I was on to something, because as resources stocks have 

rebounded extremely strongly, many of the screens have indeed struggled to keep up with 

the indices from which they are compiled. The table includes all regular annually updated 

screens and excludes one-off thematic screens, the quarterly blue-chip momentum screen 

and five-year income screens. 

Let us now consider an elaboration of the relationship between the MPV and their particular unique LQ: MPV[LQ]. 

This illustrative discussion will aid in rationalizing the selection of our final inferential measure of the CCMNP’s 

detection of a TP. 

7.1.1 Accounting Quality As we will demonstrate, the CCMNP [LQ] of the MPVs are not constructed to offer 

directional queuing to guide the user to a {Buy, Hold or Sell} action. These CCMNP MPV[LQ]-codes are rather a 

suggestive context for a particular stock individually for that variable. That is to say there is NO “Super Summary” 

code that advises: {Buy, Hold, or Sell} or any of the intermediate nuance: such as Strong Buy. Given this, we elected to 

use the study results of Lusk & Halperin (2016) where a series of experts gave their reaction to the directional 

implications of the linguistic codex. For example, for the [MPV] Accounting Quality: There are four LQ variables: 

{Aggressive Accounting; Conservative Accounting; Non-Cash Earnings; Possible Sandbagging. The assignment of 

the normalized weights using the expert directional guidance reported by Lusk & Halperin (2016) was:  

Aggressive Accounting was given (-1) as the 33.3% of the time the Expert Raters indicated that that Aggressive 

Accounting suggested a likely deterioration in the performance of the price of the stock.  

Conservative Accounting was given (-1) as the 38.1% of the time the Expert Raters indicated that that Conservative 

Accounting suggested a likely enhancement in the performance of the price of the stock;  

Non-Cash Earnings was given (-0.5) as the 16.7% of the time the Expert Raters indicated that that Non-Cash 

Earnings suggested a likely deterioration in the performance of the price of the stock, 

Possible Sandbagging was given (+0.5) as the 11.9% of the time the Expert Raters indicated that that Possible 

Sandbagging suggested a likely enhancement in the performance of the price of the stock.   
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7.1.2 The CCMNP MPV[LQ] Codex The research report of Lusk & Halperin (2016) was used for all of the 12 MPV 

and their unique LQ; this resulted in the following scoring profile as presented in Table 3: 

Linguistic Coding[LQ] Selected Market Performance Variables 

Strong Build-up[1.0]; Strong Drain[-1.0]; Modest 

Build-up[0.5]; Modest Drain[-0.5] 
Management of Reserves 

Conservative Accounting[1.0]; Aggressive 

Accounting[-1.0]; Non-Cash Earnings[-0.5]; Possible 

Sandbagging[0.5] 

Accounting Quality 

Leading[1.0]; Lagging[-1.0]; Rising[0.5]; Fading[-1.0]  Share Price Performance 

Outperforming[1.0]; Challenged[-1.0]; 

[Harvesting[0.5]; [Turnaround[0.5] 
Valuation Characteristics 

Sustainable[1.0]; Eroding[-1.0]; Improving[0.5]; 

Questionable[-0.5]  
Sustainability of Returns 

Quick&Able[1.0]; Constrained[-1.0]; Some 

Capacity[0.5]; Limited Flexibility[-0.5] 
Borrowing Capacity 

Superior[1.0]; Substandard[-1.0]; Expected 

Decline[-0.5]; Strategic Play[0.5] 
Growth Expectation 

Leader[1.0]; Laggard[-1.0]; Earnings Focus[0.5]; 

Revenue Focus[-0.5] 
Earnings Coverage 

Supporting[1.0]; Milking the Business[-1.0]; 

Maintenance[0.5]; Betting on the Future[-0.5] 
Capital Investment Strategy 

Undervalued[1.0]; Overvalued[-1.0]; Neutral[0.5] CCPL Upside Downside 

Strong[1.0]; Weak[-1.0];  Moderate[0.5] Dividend Coverage 

P/B Above[1.0] P/B Below[-1.0] Relative Evaluation 

Table 3 Ordinal Coding of the 12 Linguistic dimensions of the MPV Selected for the Evaluation of the CCMNP 

7.1.3 TP Measure Definition Using the coding schema scripted in Table 3 we then could compute a numeric value for 

each stock reported in the CCMNP. Specifically, the sample Panel segment as was used for the PC test, we selected for 

all of the 12 MPV, noted above, the ten (10) CCMNP LQ-codes recorded from the TP and indexed back nine 

months—i.e., ten (10) scripted realizations in total the last point of which being the TP. This created a data-capture for 

the 12 MPV and their LQ codex for the selected ten months that was a matrix of [10 ×12] [TenMonths x 12MPVs]. 

This matrix of 120 assigned values as parameterized from Table 3 is used to create the TP score for the selected stock.  

7.2 HON Details  

For example, for HON using SRC[EQ1] a RP at Sept 2008 was identified, which upon further testing (Note 4), was 

judged as a TP. Indexing back for 10 months, we arrived at Dec 2007. Next we used Table 3 to value this stock. As an 

illustration, consider the MPV:Share Price Performance. The CCMNP recorded occurrences for the ten months 

sub-Panel[Dec2007:Sept2008] as:  Leading was noted twice: [Scored as 2], Lagging was noted once:[Scored as -1]; 

Rising was not recorded: [Scored as 0]; Fading was reported thrice: [Scored as -3]. The value thus given to the MPV: 

Share Price Performance: was: -2 = ( [2] + [-1] + [0] + [-3]). This was done for all 12 MPVs and the final total using all 

of the 12 MPVs was: +31.5 as demonstrated in the following table: 
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For example, for HON the counts of the Linguistic that were formed by the CCMNP were: 

Linguistic Coding Market Performance Variables 

Strong Build-up[5]; Strong Drain[0]; Modest 

Build-up[0]; Modest Drain[0] 
Management of Reserves Score= 5 

Conservative Accounting[0]; Aggressive 

Accounting[0]; Non-Cash Earnings[0]; Possible 

Sandbagging[0] 

Accounting Quality Score= 0 

Leading[2]; Lagging[1]; Rising[0]; Fading[3]  Share Price Performance Score= -2 

Outperforming[0]; Challenged[0]; [Harvesting[0]; 

[Turnaround[0] 
Valuation Characteristics Score= 0 

Sustainable[0]; Eroding[0]; Improving[0]; 

Questionable[0]  
Sustainability of Returns Score= 0 

Quick&Able[9]; Constrained[0]; Some Capacity[0]; 

Limited Flexibility[0] 
Borrowing Capacity Score= 9 

Superior[0]; Substandard[0]; Expected Decline[0]; 

Strategic Play[0] 
Growth Expectation Score= 0 

Leader[0]; Laggard[0]; Earnings Focus[0]; Revenue 

Focus[0] 
Earnings Coverage Score= 0 

Supporting[0]; Milking the Business[0]; 

Maintenance[0]; Betting on the Future[0] 
Capital Investment Strategy Score=0 

Undervalued[1]; Overvalued[0]; Neutral[9] CCPL Upside Downside Score=5.5 

Strong[0]; Weak[0];  Moderate[10] Dividend Coverage Score=5 

P/B Above[9] P/B Below[0] Relative Evaluation Score=9 

Table 4 Ordinal Coding of the 12 Linguistic Dimensions as Parameterized 

Note that not all the months were coded with a LQ. This is a very positive aspect of the CCMNP as there appears to be 

a frontier boundary to qualify recording a MPV[LQ] as opposed to always affixing a LQ to each MPV. This discretion 

gives more weight or meaning to the set of LQs.  

7.3 Statistical Context  

To give this signed accumulated numeric score a statistical framework, we decided to convert the accumulated total to 

a percentage on the possible highest score on a TP-analysis basis. As there are 12 MPVs this would then be 120 as the 

maximum score. In the case for HON, the percentage is: +26.25% [31.5/120]. To give a context to this percentage, we 

created a 95%CI to benchmark the accumulated percentage as different from the Null of No Effect; we constructed a 

Benchmarking interval around 5% as this seems a logical No-Effect zone and has a slightly greater precision than one 

closer to zero. Recall this is why we formed a Null space using the S&P500 for the two-sets of four points around the 

RP using the Mean test. This linguistic Null zone is: [1.1% to 8.9%]; as we are taking the absolute value of the score, 

we then are only interested if the score is outside the benchmark on the Right Hand Side [RHS]. We used this as the 

Null screen—to wit: If the ABS of the score for the firm at: Sept2008: TP is not outside the test CI on the RHS then 

there is NO signaled directional evidence of the TP and thus we record this as NO Effect—i.e., no evidence of a change 

in trajectory. If the value is larger than the RHS then we reject the Null of No-Effect as there is evidence that the score 

is an indication of the directional projection of the linguistic codex. In this case, for HON as the sign of the summed 

total is > 0 the CCMNP is signaling an Increase in the market price of the stock or a positive change in trajectory. If on 

the other hand, the sign of the sum where to have been negative, then the CCMNP signals a decrease in the stock price.   

7.4 Summary  

Therefore, using the CCMNP for HON the score is the sum of these 12MPV[LQ] scores: +31.5 

[(5)-(2)+(9)+(5.5)+(5)+(9)]. This converted value +26.25% [31.5/120] is > than 8.9% and so the CCMNP suggests a 

Positive TP for HON after the TP. This is to say, overall the CCMNP linguistic codes were consistent with a positive or 

stock price growth scenario. However, the actual track of the HON as reported by the S&P500 using the bell-price was 

in fact to lose market value on a share basis. Specifically, referencing the numbers in Table 4 the Average of the four 
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S&P500 prices for HON above the RP was 52.7 and the Average of the four after the RP was 29.5 and this difference 

had a two-tailed p-value of <0.0002 suggesting a strong rejection of the Null of no difference. Therefore, for HON 

relative to this S&P500 TP at Sept:2008 the CCMNP offers incorrect information if one looks at the LQ-profile which 

suggests the stock price likely to increase in value which is contrary to the S&P500 benchmark reality. This is then the 

CCMNP TP acuity protocol as elucidated by the analysis of HON. With these calibration decisions and, restricting our 

analysis to the monthly reporting of the stock-trading valuations where there is a high degree of correspondence 

between the reported value of the S&P500 and the values reported by the CCMNP for the PDCPL, we now take up 

the evaluation of the CCMNP respecting the focus of this research report: The acuity of the prediction of the directional 

change as compared to the S&P500 benchmark using the TP as the benchmark 

8. Evaluation of the CCMNP: Testing the Acuity of the Predictive Protocol  

8.1 Sample Frame  

As detailed above, as there is no clear or definitive classification of firms that may suggest a usual partition of the 

firm-set so as to have a cluster-sample profile or portfolio, we have decided to taken a random sample of 47 firms 

from the CCMNP. We arrived at a random sample of 47 as follows: We selected 47, as in a preliminary study of the 

average number of TPs per organization was 2.27. We intended to accrue about 100 sample points. Assuming that 

there would be two firms that would not provide useful data this would suggest that 45 [47-2] would provide about 

100 sample points. This sample size was deemed to be adequate for a binary analysis which is the basic profiler for 

this vetting analysis. For example, a test-against for two events with a non-directional difference of 40% pegged at 

50% with a Null benchmark of 10% gives Power of 93.1% for a sample split of 50%. Further, the FPE precision of a 

95% confidence interval test for an expectation of chance is 9.8%. Both, the Power and the Precision, are consistent 

with a test that does not invite the FPE or incorrect rejection of the Null of NO-Effect and so is conservative in 

nature. The reality was that there was only one firm that dropped out of the accrual: Southwest Airlines [LUV]; for 

the 46 firms there were 103 sample points. Three of these firm sample points did not have a Pearson correlation of 

the [S&P500 w. PDCPL] and so were not used in the study. Overall for the 100 turning points the profile of the 

Correlation[S&P500 w. PDCPL] was: Range[ 93.0% to 99.9%]. This seems therefore a reasonable sample accrual 

profile.  

8.2 Results Profile  

The classification of the S&P500 as the state-of-nature-benchmark cross evaluated with the CCMNP scoring 

protocol as discussed above is presented in Table 5.   

State of Nature CCScore: Increase CCScore: Decrease CCScore: No Decision
+
  

TP: S&P Up-Turn 

Track 

Correct [30] Error [1] Error [9] 

TP: S&P Down-Turn 

Track 

Error [22] Correct [2] Error [10] 

TP: S&P No Decision* Error [22] Error [0] Correct [4] 

Table 5 Profile of the CCMNP v. S&P500 Turning-Points, n =100 

*We recorded No Decision for the SRC if the p-value for the Mean-test of the two groups of the four points around the 

RP was not <0.25. +We recorded No Decision for the CC Linguistic analysis if the ABS of the LQ-Total was not 

greater than the Upper Limit of the 95% confidence interval for the Null-Zone.  

8.3 Discussion  

As an overall indication of the classification results consider the meaning of the cells in Table 5. The cell is the 

intersection of The S&P500 as the benchmark using the SCR [EQ1] and eventually coding the RP as a TP. Recall, after 

the PC screening, to further avoid any spurious flagging of RP as TP we used a Mean test of the SCR partitioning. In 

this context, anytime the Mean test had a p-value not <0.25, we coded this as a No Decision or No Effect. This is the 

ROW classification rationale where we have recorded the S&P500 indication as the State of Nature—this is our 

benchmark for the CCMNP. For example, there were 40 instances where the S&P500 protocol indicated that there 

would be an Up-turn. The Column coding then takes the LQ-profile of the 12 MPVs as presented in the CCMNP and 

applied the coding measures discussed above. The Column classification also make three decisions: The stock price is 

likely: To be Increasing, To be Decreasing, or There is No Decision. The intersection of a cell is the joint of the 

Row[S&P500] & Column[CCMNP] coding and so indicates the frequency [counts] of the number of times the 
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S&P500 TP coded benchmark & the CCMNP coding are in agreement. Only the main diagonal [Shaded] are where 

there is correct information of the CCMNP respecting the S&P500 benchmark. In this case, a simple overall measure is 

offered by the Pearson Chi2 inference statistic and the related Chi2 Cell classification value. For Table 5, the overall 

Chi2 has a Pearson p-value 0.47 [Fisher’s Exact Test]; further there are no cells where the Chi2 cell contribution is >1.0 

which is a usual boundary cut-point for important cells profiles that do not follow the marginals. See: Tamhane & 

Dunlop (2000, p.324). In this case, the overall analysis suggests that there is no relationship between the two 

classifications models that is divergent from the marginal expectations. This means that S&P500 TP-Benchmarks are 

not detected by the CCMNP when one accounts for the probability projections given the Row & Column marginals.  

This statistical analysis mirrors the common sense of the information in the Classification Table 5. For example, 

consider the number of times that the TPs indicated a downturn in the S&P500 price tracking of a stock. There were 34 

instances where the S&P500 analysis identified an impending downturn after the TP. Given this benchmark, the 

CCMNP profile was: 

Correctly detected the Impending Downturn: 5.9% [2/34] 

Failed to Correctly Classify the Impending Downturn: 94.1% [32/34] 

Both 5.9% & 94.1% are outside the 95% test Confidence Interval around chance indicating that the CCMNP 

classifications did not calibrate to be in sync with S&P500 TPs. 

Further, if we take the incidence as the S&P500 distribution of Increases, Decreases and No Decision, we have: 

Increase 40% [40/100], Decrease 34% [34/100], and No Decision 26% [26/100]. 

For the CCMNP the classification we find: 

Increase 74%[74/100], Decrease 3%,[3/100] and No Decision 23% [23/100]. 

The z-calculated values for the individual percentage comparisons are: 

Classification of Increasing: S&P500 [40%] v. CCMNP [74%]; z-cal = 6.8  

Classification of Decreasing: S&P500 [34%] v. CCMNP [3%]; z-cal = 6.2 

Classification of No Directional indications: S&P500 [26%] v. CCMNP [23%]; z-cal = 0.6  

If we compare this to the 95% standard cut-off of 1.96 there is clear evidence that there is a difference in the two 

classification systems [S&P500 & CCMNP] regarding the tracking of either an Increasing trajectory or a Decreasing 

trajectory after the TP. This is another way of profiling the information in the classification Table 5 where we found 

that the Pearson Chi2 was > than 0.05. The only case where they are In-sync is regarding the No Decision category. 

8.4 Summary of Results  

The CCMNP has a bias in making a classification—more often than not, the CCMNP suggests an Increase or Up-Turn 

in the S&P500 trajectory after the TP. Usually, this is an error. Relative to the actual percentage of time, according to 

the S&P500 protocol there were 40 instances of an increasing trajectory after the TP, however, the CCMNP makes an 

increasing classification of 74 instances. This is a relative error compared to the benchmark of: 85% [[74 – 40] / 40]. 

This means that if the S&P500 was the correct or the actual state of nature, then individuals using the CCMNP 

calibrated, as we suggested, will incorrectly assume 85% of the time that an increase is in the offing. If they were to act 

on this—i.e., Buy the stock—then the economic impact would likely to be a loss in portfolio market capitalization. 

This is opposed to the other case where investors fail to take advantage of a possible Buy indication due to an erroneous 

decrease indication. This is rarely the case as only in one case was the CCMNP indication a Decrease when the 

S&P500 indicated an Increase. Overall summary: There is more than a reasonable possibility that the CCMNP is not 

likely to inform the stock selection decision. This study and these results offer some directions for future research 

addressed to the evaluation of MNPs. Following, we provide a set of caveats that are needed as context of our results; 

further, we will offer a discussion of future studies that are begged by our results.  

9. Summary, Caveats, & Outlook 

9.1 Summary  

The analysis that we conducted used the Market Navigation Platform that we received from the CapitalCube, LLP. 

[CCMNP]. The focus of our analysis was to evaluate the predictive acuity of the CCMNP. In this regard, we elected to 

use the conceptual framework offered by Chen & Chen (2016) that used a simple and transparent montage focused on 

the Turning Point [TP]; in our case, TPs of the monthly S&P500 time series were used. The idea is simple: If the codex 

used to scale the linguistic qualifiers that are part of the CCMNP just before the TP suggests an up-turn [or a downturn] 
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in the S&P500, then there is predictive value in the information base of the CCMNP. In testing a random sample of 

firms traded over the S&P500 panel, we found that there is no statistically significant evidence that the CCMNP, as 

configured around the TPs, allows the detection of TPs. Rather, there is evidence that the linguistic codex produced 

by the CCMNP is biased to suggest up-turns.   

9.2 Caveats  

Does this mean that the CCMNP is wrong or misinforms investors? No, not necessarily! Recall, the S&P500-TP 

benchmark is based upon a series of calculations. The benchmark derived from the S&P500—i.e., the TP—is profiled 

effectively as a change in trajectory over two four-month time segments in the panel on either side of the TP. Only 

when these two averages are very different does the RP achieve the label of TP. Possibly, this is too short a sub-panel 

partition comparison. Maybe after the fourth point of the TP, the S&P500 re-tracks in the direction suggested by the 

sub-set above the TP. In this case, had we used this longer panel-segment there likely would not have been a RP/TP 

flag. We did not investigate this possibility. Also, perhaps using a parametric statistical measure to compute the p-value 

vetting is overly sensitive—i.e., too powerful. If we used a longer sub-panel and a non-parametric or a distribution free 

statistical test, usually less powerful, then possibly there would have been fewer RP/TP-flags generated. This also was 

not tested. Further, the directional designation ascribed to the CCMNP is formed by a ten-month Panel back-indexing 

from the TP. Perhaps this is too long or too short. Further, the scoring derived from Lusk & Halperin (2016) is very 

basic almost binary—i.e., perhaps naïve; possibly there needs to be a more sophisticated calibration that creates more 

ordinal differentiations and/or calibrations of the scoring metric. This was not done. Such a recalibration is likely to be 

needed, as over the Panel tested, the four MPV: {CPLA: SESAL: PDCPL & CCPL} exhibit high R2 association with 

the S&P500 and also are sometimes highly co-associated in a Pearson sense and so often do not form a fully 

differentiated factor space. Finally, the Panel used was the monthly reported S&P500 values and so the values captured 

by the CCMNP are effectively a smoothed dataset relative to the dynamic movement of the stock clock-traded values, 

or day closing-bell prices or, for that matter, weekly values. Therefore, perhaps important detection information was 

lost due to using monthly smoothed values of the S&P500 data stream. Over a long Panel stream of trading reported by: 

minutes, days or weeks there may have been more detection acuity. However, for our study the concern with using a 

finer-mesh than monthly in the time series context is that: The error to signal ratio is relative high and so there needs 

to be a very long data steam to ferret out the functional-signal which will likely traverse many Event spaces. An 

alternative to this is to use error detection models [in the error to signal context] and employ error corrections filters 

that may not require such long time series as they are using designed error filters. In this regard, we recommend the 

research report of Guo (2017). This Error-Filtering direction could be a promising approach as our report has identified 

a possible error-filter that could be employed in that the TPs are directionally biased and so using this as a Bayes 

Qualifier may offer a design enablement. We did not create this information in our study. Our results ONLY mean that 

if one accepts all the many decisions made relative to the calibration of the S&P500 TP-benchmark, and the directional 

implications drawn from the CCMNP, then these results are possibly meaningful. 

9.3 Outlook  

In the CCMNP protocol that we used for testing, we selected ALL of the Screens and formed a scoring model, that 

while it was based upon expert guidance regarding to the linguistic nature of the screen, was, nonetheless,  a derived 

coding modality. Further, we used all the stocks to form the random sample. Alternative testing protocols, to further 

investigate the CCMNP, are to: (1) use the MPVs to create projection or forecasts that may be used to condition the 

directional profiles, (2) test the acuity of individual Screens focused on Event Screens, such as before or after an Event 

such as the Lehman Bros Sub-Price debacle. See McDonald & Robinson (2009) , (3) test partitions of the firm-set: a 

logical choice being a comparison between the Large Cap, Small Cap & Micro Cap as was done and is reported on the 

AAII Investor Stock Pro platform, or (4) to opt for another modeling approach such as suggested by Guo (2017). These 

studies are needed to form a more comprehensive assessment of the CCMNP.  
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Appendix  

Table A Selected Firms from the CCMNP, n=47 

AME BA CAT CHRW CMI CSX CTAS DNB DOV EFX 

ETN EXPD FDX FLR FLS GD GE GWW HON IR 

ITW KSU LLL LUV* MAS MCO MMM NOC NSC PBI 

PCAR PH PWR R RHI ROP RSG RTN SNA SRC 

SWK TXT UNP UPS URI UTX WM    

*LUV [Southwest Airlines] was not used in the analysis of the CCMNP due to the failure of the Correlation 

screening check.             

 

Notes 

Note 1. https://www.nyse.com/publicdocs/nyse/markets/nyse/NYSEM_Algo_Routing_Access_Agreement_Form.pdf 

Note 2. We took our measures from the WRDS™ platform referencing the CRSP™ Dataset. 

Note 3. We used this test as from time to time there seemed to be an indication of unequal variance identified using 

the Welsh test as programmed in JMP™v.13 of the SAS™ Institute.  

Note 4. Specifically, the p-value of statistical separation around the RP was <0.0002 and the qualifying correlation 

[S&P500 w. PDCPL] was: 0.995 which, was then the test information that was needed to label the RP a TP at 

Sept[2008]. 
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